RAS Chemistry & Material ScienceТеоретические основы химической технологии Theoretical Foundations of Chemical Engineering

  • ISSN (Print) 0040-3571
  • ISSN (Online) 3034-6053

Parametric Analysis of a Mathematical Model of a Catalytic Oscillator

PII
10.31857/S0040357123050160-1
DOI
10.31857/S0040357123050160
Publication type
Status
Published
Authors
Volume/ Edition
Volume 57 / Issue number 5
Pages
606-611
Abstract
In some cases, a reaction in the oscillatory mode has a higher selectivity for the target product. To organize production in this mode, it is necessary to determine the conditions under which fluctuations occur, as well as to consider the very nature of the fluctuations. In this work, a parametric analysis of the basic kinetic model of an oscillatory reaction without autocatalysis was made. The boundaries of the parameters at which the system oscillates were found. Phase portraits of the system and bifurcation curves were constructed. Stationary states of the system were analyzed. The type and number of stationary states were identified. It was shown that the system at certain parameters has three stationary states: two unstable nodes and a saddle. Parametric analysis of basic models will allow selecting initial approximations for calculations of more complex models of real reactions.
Keywords
параметрический анализ колебательная реакция фазовый портрет кинетическая модель бифуркационные кривые предельный цикл
Date of publication
01.09.2023
Year of publication
2023
Number of purchasers
0
Views
55

References

  1. 1. Bykov V., Tsybenova S., Yablonsky G. Chemical Complexity via Simple Models. De Gruyter Graduate, 2018
  2. 2. Gray C., An analysis of the Belousov-Zhabotinskii reaction // Rose-Hulman Undergrad. Math. 2002. V. 3. P. 1.
  3. 3. Kurin-Csörgei K., Epstein I.R., Orbán M. et al. Systematic design of chemical oscillators using complexation and precipitation equilibria // Nature. 2005. V. 433. P. 139.
  4. 4. Novakovic K., Bruk L., Temkin O. History, versatility and future prospects of oscillatory carbonylation reactions of alkynes // RSC Advances. 2021. V. 11(39). P. 24336.
  5. 5. Parker J., Novakovic K. The Effect of Temperature on Selectivity in the Oscillatory Mode of the Phenylacetylene Oxidative Carbonylation Reaction // ChemPhysChem. 2017. V. 18(15). 1981–1986 (2017)
  6. 6. Наимов А.Я., Быков В.И. Параметрический анализ базовой кинетической модели, содержащей автокатализ // Эл. сб. тр. Первая научно-техническая конференция Московского технологического университета. М., 2016. С. 682
  7. 7. Вольтер Б.В., Сальников И.Е. Устойчивость режимов работы химических реакторов. 2-е изд., перераб. и доп. М.: Химия, 1981.
  8. 8. Слинько М.Г. Некоторые пути развития методов моделирования химических процессов и реакторов // Теорет. основы хим. технологии. 1976. Т. 10. № 2. C. 171.
QR
Translate

Индексирование

Scopus

Scopus

Scopus

Crossref

Scopus

Higher Attestation Commission

At the Ministry of Education and Science of the Russian Federation

Scopus

Scientific Electronic Library