RAS Chemistry & Material ScienceТеоретические основы химической технологии Theoretical Foundations of Chemical Engineering

  • ISSN (Print) 0040-3571
  • ISSN (Online) 3034-6053

Эрозионная ультразвуковая очистка катодной ленты отработанных литий-ионных аккумуляторов типа NMC

PII
10.31857/S0040357124010057-1
DOI
10.31857/S0040357124010057
Publication type
Article
Status
Published
Authors
Volume/ Edition
Volume 58 / Issue number 1
Pages
35-42
Abstract
Теоретические основы химической технологии, Эрозионная ультразвуковая очистка катодной ленты отработанных литий-ионных аккумуляторов типа NMC
Keywords
Date of publication
21.02.2024
Year of publication
2024
Number of purchasers
0
Views
46

References

  1. 1. Nitta N., Wu F., Lee J.T., Yushin G. Li-Ion Battery Materials: Present and Future // Materials Today. 2015. V. 18. № 5. P. 252–264. https://doi.org/10.1016/j.mattod.2014.10.0402.
  2. 2. Harper G., Sommerville R., Kendrick E., Driscoll L., Slater P., Stolkin R. et al. Recycling lithium-ion batteries from electric vehicles // Nature. 2019. № 575. P. 75–86. https://doi.org/10.1038/s41586-019-1682-53.
  3. 3. Xie, J., Lu Y.-C. A Retrospective on Lithium-Ion Batteries // Nat. Commun. 2020. V. 11. № 1. P. 2499. https://doi.org/10.1038/s41467–020–16259–94.
  4. 4. Torkaman R., Asadollahzadeh M., Torab-Mostaedi M., Ghanadi Maragheh M. Recovery of cobalt from spent lithium ion batteries by using acidic and basic extractants in solvent extraction process // Sep. Purif. Technol. 2017. V. 186. P. 318–325, https://doi.org/10.1016/j.seppur.2017.06.0235.
  5. 5. Fan E., Li L., Wang Z., Lin J., Huang Y., Yao Y., Chen R., Wu F. Sustainable recycling technology for li-ion batteries and beyond: challenges and future prospects // Chem. Rev. 2020. V. 120. № 14. P. 7020–7063. https://doi.org/10.1021/acs.chemrev.9b005356.
  6. 6. Ma Y., Svärd M., Xiao X., Gardner J.M., Olsson R.T., Forsberg K. Precipitation and crystallization used in the production of metal salts for li-ion battery materials: a review // Metals. 2020. V. 10. № 12. P. 1609. https://doi.org/10.3390/met101216097.
  7. 7. Kim K., Raymond D., Candeago R., Su X. Selective cobalt and nickel electrodeposition for lithium-ion battery recycling through integrated electrolyte and interface control // Nat. Commun. 2021. V. 12. № 1. P. 6554. https://doi.org/10.1038/s41467-021-26814-78.
  8. 8. Jin S., Mu D., Lu Z., Li R., Liu Z., Wang Y., Tian S., Dai C. A comprehensive review on the recycling of spent lithium-ion batteries: urgent status and technology advances // J. Clean. Prod. 2022. V. 340. P. 130535. https://doi.org/10.1016/j.jclepro.2022.1305359.
  9. 9. Jung J.C.-Y., Sui P.-C., Zhang J. A Review of recycling spent lithium-ion battery cathode materials using hydrometallurgical treatments // J. Energy Storage. 2021. V. 35. P. 102217. https://doi.org/10.1016/j.est.2020.10221710.
  10. 10. Lei S., Sun W., Yang Y. Solvent Extraction for Recycling of Spent Lithium-Ion Batteries // J. Hazard Mater. 2022. V. 424. P. 127654. https://doi.org/10.1016/j.jhazmat.2021.12765411.
  11. 11. Qin L., Di J., He Y. Efficient synthesis of furfuryl alcohol from corncob in a deep eutectic solvent system // Processes. 2022. V. 10. P. 1873. https://doi.org/10.3390/pr1009187312.
  12. 12. Gradov O.M., Zinov’eva I.V., Zakhodyaeva Yu.A., Voshkin A. A. Kinetics of ultrasonic dissolution of metal oxide powder for different spatial combinations of the cavitation region and eckart acoustic flow // Theor Found. Chem. Eng. 2023. V. 57. P. 255–264. https://doi.org/10.1134/S004057952303006513.
  13. 13. Zhang T., He Y., Ge L., Fu R., Zhang X., Huang, Y. Characteristics of wet and dry crushing methods in the recycling process of spent lithium-ion batteries // J. Power Sources. 2013. V. 240. P. 766–771. https://doi.org/10.1016/j.jpowsour.2013.05.00914.
  14. 14. Chen L., Tang X., Zhang Y., Li L., Zeng Z., Zhang Y. Process for the recovery of cobalt oxalate from spent lithium-ion batteries // Hydrometallurgy. 2011. V. 108. P. 80–86. https://doi.org/10.1016/j.hydromet.2011.02.01015.
  15. 15. Li J., Shi P., Wang Z., Chen Y., Chang C.-C. A Combined recovery process of metals in spent lithium-ion batteries // Chemosphere. 2009. V. 77. P. 1132–1136. https://doi.org/10.1016/j.chemosphere.2009.08.04016.
  16. 16. Wang M., Tan Q., Liu L., Li J. Efficient separation of aluminum foil and cathode materials from spent lithium-ion batteries using a low-temperature molten salt // ACS Sustain Chem. Eng. 2019. V. 7. P. 8287–8294. https://doi.org/10.1021/acssuschemeng.8b0669417.
  17. 17. Zou H., Gratz E., Apelian D., Wang Y. A Novel method to recycle mixed cathode materials for lithium ion batteries // Green Chemistry. 2013. V. 15. P. 1183. https://doi.org/10.1039/c3gc40182k18.
  18. 18. Zeng X., Li J. Innovative application of ionic liquid to separate al and cathode materials from spent high-power lithium-ion batteries // J. Hazard Mater. 2014. V. 271. P. 50–56. https://doi.org/10.1016/j.jhazmat.2014.02.00119.
  19. 19. Gu K., Chang J., Mao X., Zeng H., Qin W., Han J. Efficient separation of cathode materials and al foils from spent lithium batteries with glycerol heating: a green and unconventional way // J. Clean Prod. 2022. V. 369. P. 133270. https://doi.org/10.1016/j.jclepro.2022.13327020.
  20. 20. Wang H., Liu J., Bai X., Wang S., Yang D., Fu Y., He Y. Separation of the cathode materials from the al foil in spent lithium-ion batteries by cryogenic grinding // Waste Management. 2019. V. 91. P. 89–98. https://doi.org/10.1016/j.wasman.2019.04.05821.
  21. 21. Zinov’eva I.V., Fedorov A.Ya., Milevskii N.A., Zakhodyaeva Yu.A., Voshkin A.A. Dissolution of metal oxides in a choline chloride – sulphosalicylic acid deep eutectic solvent // Theor. Found. Chem. Eng. 2021. V. 55. P. 663–670. https://doi.org/10.1134/S004057952104037022.
  22. 22. Ijardar S.P., Singh V., Gardas R.L. Revisiting the physicochemical properties and applications of deep eutectic solvents // Molecules. 2022. V. 27. P. 1368. https://doi.org/10.3390/molecules2704136823.
  23. 23. Gradov O.M., Zinov’eva I.V., Zakhodyaeva Y.A., Voshkin A.A. Modelling of the erosive dissolution of metal oxides in a deep eutectic solvent – choline chloride/sulfosalicylic acid – assisted by ultrasonic cavitation // Metals. 2021. V. 11. P. 1964. https://doi.org/10.3390/met1112196424.
  24. 24. Zinov’eva I.V., Fedorov A.Ya., Milevskii N.A., Zakhodyaeva Yu.A., Voshkin A.A. A deep eutectic solvent based on choline chloride and sulfosalicylic acid: properties and applications // Theor. Found. Chem. Eng. 2021. V. 55. P. 371–379. https://doi.org/10.1134/S004057952103024625.
  25. 25. Milevsky N.A., Zinovieva I.V., Zakhodyaeva Yu.A., Voshkin A.A. Extractive Separation of Co/Ni pair with the deep eutectic solvent aliquat 336/Timol // Theor. Found. Chem. Eng. 2022. V. 56. P. 45–52. https://doi.org/10.1134/S0040579522010080
  26. 26. Milevskii N.A., Zinov’eva I.V., Zakhodyaeva Yu.A., Voshkin A.A. Separation of Li(I), Co(II), Ni(II), Mn(II), and Fe(III) from hydrochloric acid solution using a menthol-based hydrophobic deep eutectic solvent // Hydrometallurgy. 2022. V. 207. P. 105777. https://doi.org/10.1016/j.hydromet.2021.10577727.
  27. 27. Flynn H. G. Physics of Acoustic Cavitations in Liquids // Physical acoustics – Principles and methods. NY.: Academic Press, 1964, P. 376.
QR
Translate

Индексирование

Scopus

Scopus

Scopus

Crossref

Scopus

Higher Attestation Commission

At the Ministry of Education and Science of the Russian Federation

Scopus

Scientific Electronic Library