RAS Chemistry & Material ScienceТеоретические основы химической технологии Theoretical Foundations of Chemical Engineering

  • ISSN (Print) 0040-3571
  • ISSN (Online) 3034-6053

Трехмерная численная модель ультразвуковой коагуляции аэрозольных частиц PM2.5 в вихревых акустических течениях

PII
10.31857/S0040357124010061-1
DOI
10.31857/S0040357124010061
Publication type
Article
Status
Published
Authors
Volume/ Edition
Volume 58 / Issue number 1
Pages
43-54
Abstract
Теоретические основы химической технологии, Трехмерная численная модель ультразвуковой коагуляции аэрозольных частиц PM2.5 в вихревых акустических течениях
Keywords
Date of publication
21.02.2024
Year of publication
2024
Number of purchasers
0
Views
29

References

  1. 1. Zhang Y., Yang Y., Chen, J., Shi, M. Spatiotemporal heterogeneity of the relationships between PM 2.5 concentrations and their drivers in China’s coastal ports // J. Environ. Manag. 2023. V. 345. P. 118698. Hassan Md. S., Gomes R., Bhuiyan M., Rahman M. Land Use PM 2.5 in Central Bangladesh // Pollutants. 2023. V. 3. P. 381–395.
  2. 2. Ihsan I., Oktivia R., Anjani R., Zahroh N. Health risk assessment of PM 2.5 and PM 10 in KST BJ Habibie, South Tangerang, Indonesia // IOP Conference Series: Earth and Environmental Science. 2023. V. 1201. P. 012033.
  3. 3. Ma Y., Zang E., Liu Y., Lu Y., Krumholz H., Bell M., Chen K. Wildfire smoke PM 2.5 and mortality in the contiguous United States // medRxiv: the preprint server for health sciences. 2023.
  4. 4. Лаптев А.Г., Башаров М.М., Лаптева Е.А. Сепарационная и энергетическая эффективность насадочных аппаратов очистки газов от аэрозолей // Теорет. основы хим. технологии. 2017. Т. 51. № 5. С. 491–498.
  5. 5. Лаптев А.Г., Лаптева Е.А. Определение эффективности насадочных газосепараторов капельных аэрозолей с учетом неравномерности профиля скорости газа // Теорет. основы хим. технологии. 2021. Т. 55. № 2. С. 235–241.
  6. 6. Riera E., González-Gómez I., Corral G., Gallego-Juarez J. Ultrasonic agglomeration and preconditioning of aerosol particles for environmental and other applications // Power Ultrasonics (Second Ed.). 2021. V. 55. № 2. С. 235–241.
  7. 7. Song L. Modeling of Acoustic Agglomeration of Fine Aerosol Particles. Ph. D. Thesis. USA: The Pennsylvania State University, 1990.
  8. 8. Moldavsky L., Gutfinger C., Oron A., Fichman M. Effect of sonic waves on gas filtration by granular beds // J. Aerosol Sci. 2013. V. 57. P. 125–130.
  9. 9. Moldavsky L., Gutfinger C., Fichman M. Effect of acoustic waves on the performance of a multi-cyclone – Filter system // Filtration. 2011. V. 11. P. 229–232.
  10. 10. Sheng C., Shen X. Simulation of acoustic agglomeration processes of poly-disperse solid particles // Aerosol Sci. Technol. 2007. V. 41. № 1. P. 1–13.
  11. 11. Shaw D.T., Tu K.W. Acoustic particle agglomeration due to hydrodynamic interaction between monodisperse aerosols // J. Aerosol Sci. 1979. V. 10. P. 317–328.
  12. 12. Dong S., Lipkens B., Cameron T. The effects of orthokinetic collision, acoustic wake, and gravity on acoustic agglomeration of polydisperse aerosols // J Aerosol Sci. 2006. V. 37. P. 540–553.
  13. 13. Khmelyov V.N., Golykh R.N., Nesterov V.A., Shalunov A.V. Numerical Model of Ultrasonic Agglomeration of Submicron Particles in Resonant Gas Gaps // J. Eng. Phys Thermophy. 2023. V. 96. P. 255–265.
  14. 14. Khmelev V.N., Golykh R.N., Shalunov A.V., Nesterov V.A. Numerical model of ultrasonic coagulation of dispersed particles in Eckart flows // Inter. Phenom. Heat Trans. 2022. V. 10. № 2. P. 1–23.
  15. 15. Khmelev V.N., Shalunov A.V., Nesterov V.A. Improving the separation efficient of particles smaller than 2.5 micrometer by combining ultrasonic agglomeration and swirling flow techniques // PLoS One. 2020. V. 15. № 9. P. 1–6.
  16. 16. Shi Y., Bai W., Zhao Z., Ayantobo O., Wang G. Theoretical analysis of acoustic and turbulent agglomeration of droplet aerosols // Adv. Powder Technol. 2023. V. 34. Iss. 10. P. 104145.
  17. 17. Sommerfeld M., Stübing S. Lagrangian modeling of agglomeration for applications to spray drying // 9th International ERCOFTAC Symposium on Engineering Turbulence Modeling and Measurements. Thessaloniki, Greece, 2012.
  18. 18. Sommerfeld M. Validation of a stochastic Lagrangian modelling approach for inter-particle collisions in homogeneous isotropic turbulence // Int. J. Multiphase Flows. 2001. Vol. 27. P. 1828–1858.
  19. 19. Руденко О.В., Солуян С.И. Теоретические основы нелинейной акустики. М.: Наука, 1975.
  20. 20. Giese J.H. Stream Functions for Three-Dimensional Flows // J. Mathem. Physics. 1951.Sherif A., Hafez M. Computation of three-dimensional transonic flows using two stream functions // Int. J. Num. Meth. Fluids. 1988. V. 8. P. 17–29.
  21. 21. Buffoni B., Wahlén E. Steady three-dimensional rotational flows: An approach via two stream functions and Nash-Moser iteration // Analysis & PDE. 2017. V. 12.
  22. 22. Khmelev V.N., Shalunov A.V., Nesterov V.A. Summation of high-frequency Langevin transducers vibrations for increasing of ultrasonic radiator power // Ultrasonics. 2021. V. 114. P. 1–12.
QR
Translate

Индексирование

Scopus

Scopus

Scopus

Crossref

Scopus

Higher Attestation Commission

At the Ministry of Education and Science of the Russian Federation

Scopus

Scientific Electronic Library