RAS Chemistry & Material ScienceТеоретические основы химической технологии Theoretical Foundations of Chemical Engineering

  • ISSN (Print) 0040-3571
  • ISSN (Online) 3034-6053

Турбулентная температуропроводность по данным прямого численного моделирования

PII
10.31857/S0040357124020042-1
DOI
10.31857/S0040357124020042
Publication type
Article
Status
Published
Authors
Volume/ Edition
Volume 58 / Issue number 2
Pages
166-171
Abstract
Теоретические основы химической технологии, Турбулентная температуропроводность по данным прямого численного моделирования
Keywords
Date of publication
16.09.2025
Year of publication
2025
Number of purchasers
0
Views
4

References

  1. 1. Kasagi N., Tomita Y., Kuroda A. Direct numerical simulation of passive scalar field in turbulent channel flow // ASME J. Heat Transf. 1992. V. 144. P. 598–606.
  2. 2. Kawamura H., Oshaka K., Abe H., Yamamoto K. DNS of turbulent heat transfer in channel flow with low to medium-high Prandtl number fluid // Int. J. Heat and Fluid Flow. 1998. V. 19. P. 482–491.
  3. 3. Kawamura H., Abe H., Matsuo Y. DNS of turbulent heat transfer in channel flow with respect to Reynolds and Prandtl number effects // Int. J. Heat and Fluid Flow. 1999. V. 20. P. 196–207.
  4. 4. Abe H., Kawamura H., Matsuo Y. Surface heat-flux fluctuations in a turbulent channel flow up to Reτ = 1020 with Pr = 0.025 and 0.71 // Int. J. Heat and Fluid Flow. 2004. V. 25. P. 404–419.
  5. 5. Kozuka M., Seki Y., Kawamura H. DNS of turbulent heat transfer in a channel flow with a high spatial resolution // Int. J. Heat Fluid Flow. 2009. V. 30. P. 514–524.
  6. 6. Pirozzoli S., Bernsrdini M., Orlandi P. Passive scalars in turbulent channel flow at high Reynolds number // J. Fluid Mech. 2016. V. 788. P. 614–639.
  7. 7. Lluesma-Rodriguez F., Hoyas S., Pérez-Quiles M.J. Influence of the computational domain on DNS of turbulent heat transfer up-to Reτ = 2000 for Pr = 0.71 // Int. J. Heat Mass Transf. 2018. V. 122. P. 983–992.
  8. 8. Alcántara-Ávila A., Hoyas S., Pérez-Quiles M.J. DNS of thermal channel flow up to Reτ = 2000 for medium to low Prandtl numbers // Int. J. Heat Mass Transf. 2018. V. 127. P. 349–361.
  9. 9. Alcantara-Avila, F., Hoyas, S., Perez-Quiles, M.J. Direct Numerical Simulation of thermal channel flow for Reτ = 5000 and Pr = 0.71 // J. Fluid Mech. 2021. V. 916. A 29.
  10. 10. Wei T., Fife P., Klewicki J., McMurty P. Scaling heat transfer in fully developed turbulent channel flow // Int. J. Heat Mass Transf. 2005. V. 48. P. 5284–5296.
  11. 11. Abe H., Antonia R.A., Kawamura H. Correlation between small-scale velocity and scalar fluctuations in a turbulent channel flow // J. Fluid Mech. 2009. V. 627. P. 1–32.
  12. 12. Antonia R.A., Abe H., Kawamura H. Analogy between velocity and scalar fields in a turbulent channel flow // J. Fluid Mech. 2009. V. 628. P. 241–268.
  13. 13. Seena A., Afzal N. Power law velocity and temperature profiles in a fully developed turbulent channel flow // Trans. ASME J. Heat Trans. 2008. V. 130. 091701.
  14. 14. Chesnokov Yu.G. Deviation from the temperature-defect law // Russian J. Appl. Chem. 2013. V. 86. № 2. P. 220–224. [Чесноков Ю.Г. Отклонения от закона дефекта температуры //Журн. прикл. химии. 2013. Т. 86. № 2. С. 239–245.]
  15. 15. Chesnokov Yu.G. On the wall law for temperature // Theor. Found. Chem. Eng. 2017. V. 51. № 2. P. 247–251. [Чесноков Ю.Г. О законе стенки для температуры // Теор. основы хим. технологии. 2017. Т. 51. № 2. С. 230–234.]
  16. 16. Abe H., Antonia R.A. Mean temperature calculations in a turbulent channel flow for air and mercury // Int. J. Heat Mass Transfer. 2019. V. 132. P. 1152–1165.
  17. 17. Wei T. Heat transfer regimes in fully developed plane-channel flows // Int. J. Heat Mass Transfer. 2019. V. 133. P. 393–404.
  18. 18. Davidson P.A. Turbulence. An Introduction for Scientists and Engineers. New York: Oxford University Press. 2004.
  19. 19. Kader B.A., Yaglom A.M. Heat and mass transfer laws for fully developed wall flows // Int. J. Heat Mass Transfer. 1972. V. 15. P. 2329–2351.
  20. 20. Чесноков Ю.Г. Зависимость от критерия Рейнольдса интегральных характеристик течения в плоском канале // Изв. С.- Петербургского гос. технологического института (техн. университета). 2016. № 36. С. 104–107.
  21. 21. Чесноков Ю.Г. Расчет теплоотдачи в плоском канале при турбулентном режиме течения // Изв. С.- Петербургского гос. технологического института (техн. университета). 2023. № 67. С. 65–68.
QR
Translate

Индексирование

Scopus

Scopus

Scopus

Crossref

Scopus

Higher Attestation Commission

At the Ministry of Education and Science of the Russian Federation

Scopus

Scientific Electronic Library