- PII
- 10.31857/S0040357124020081-1
- DOI
- 10.31857/S0040357124020081
- Publication type
- Article
- Status
- Published
- Authors
- Volume/ Edition
- Volume 58 / Issue number 2
- Pages
- 202-210
- Abstract
- Теоретические основы химической технологии, Экстракция Li(I), Al(III) и Fe(III) из солянокислых растворов гидрофобным эвтектическим растворителем ТБФС/ментол
- Keywords
- Date of publication
- 16.09.2025
- Year of publication
- 2025
- Number of purchasers
- 0
- Views
- 6
References
- 1. Saju D., Ebenezer J., Chandran N., Chandrasekaran N. Recycling of lithium iron phosphate cathode materials from spent lithium-ion batteries: a mini-review // Ind. Eng. Chem. Res. 2023. V. 62. P. 11768–11783.
- 2. Padhi A.K., Nanjundaswamy K.S., Goodenough J.B. Phospho‐olivines as positive‐electrode materials for rechargeable lithium batteries // J. Electrochem. Soc. 1997. V. 144. P. 1188–1194.
- 3. Miao Y., Hynan P., von Jouanne A., Yokochi A. Current Li-Ion battery technologies in electric vehicles and opportunities for advancements // Energies (Basel). 2019. V. 12. P. 1074.
- 4. Harper G., Sommerville R., Kendrick E., Driscoll L., Slater P., Stolkin R. et al. Recycling Lithium-Ion batteries from electric vehicles // Nature. 2019. V. 575. P. 75–86.
- 5. Ordoñez J., Gago E.J., Girard A. Processes and Technologies for the recycling and recovery of spent Lithium-Ion batteries // Renewable and Sustainable Energy Reviews. 2016. V. 60. P. 195–205.
- 6. Forte F., Pietrantonio M., Pucciarmati S., Puzone M., Fontana D. Lithium Iron Phosphate batteries recycling: an assessment of current status // Crit. Rev. Environ. Sci. Technol. 2021. V. 51. P. 2232–2259.
- 7. Wang W., Wu Y. An overview of recycling and treatment of spent LiFePO 4 batteries in China // Resour. Conserv. Recycl. 2017. V. 127. P. 233–243.
- 8. Narbutt, J. Fundamentals of Solvent Extraction of Metal Ions. In Liquid-Phase Extraction; Elsevier, 2020; P. 121–155.
- 9. Liu, C.; Cao, Y.; Sun, W.; Zhang, T.; Wu, H.; Liu, Q.; Rao, Z.; Gu, Y. Highly Efficient Lithium-Ion Battery Cathode Material Recycling Using Deep Eutectic Solvent Based Nanofluids. RSC Sustainability 2023, 1, 270–281, doi:10.1039/D2SU00047D.
- 10. Zheng Q., Zeng L., Cao Z., Wu S., Li Q., Wang M. et al. A green and efficient process for the stepwise extraction of Cu, Ni, Co, Mn, and Li from Hazardous waste with a novel solvent extraction system of D2EHPA-NNPA // Green Chemistry. 2023. V. 25. P. 10020–10032.
- 11. Wang K., Adidharma H., Radosz M., Wan P., Xu X., Russell C.K. et al. Recovery of rare earth elements with Ionic liquids // Green Chemistry. 2017. V. 19. P. 4469–4493.
- 12. Qiao W., Zhang R., Wen Y., Wang X., Wang Z., Tang G. et al. Green solvents in battery recycling: status and challenges // J. Mater. Chem. A Mater. 2024.
- 13. Zakhodyaeva Yu.A., Zinov’eva I.V. Extraction of Pt(IV) and Pd(II) from hydrochloric acid solutions using polypropylene glycol 425 // Theoret. Found. Chem. Eng. 2021. V. 55. P. 282–289.
- 14. Gilmore M., McCourt É.N., Connolly F., Nockemann P., Swadźba-Kwaśny M., Holbrey J.D. Hydrophobic deep eutectic solvents incorporating trioctylphosphine oxide: advanced liquid extractants // ACS Sustain Chem. Eng. 2018. V. 6. P. 17323–17332.
- 15. Wazeer I., Hizaddin H.F., Hashim M.A., Hadj-Kali M.K. An overview about the extraction of heavy metals and other critical pollutants from contaminated water via hydrophobic deep eutectic solvents // J. Environ. Chem. Eng. 2022. V. 10. P. 108574.
- 16. Kozhevnikova A.V., Zinov’eva I.V., Zakhodyaeva Y.A., Baranovskaya V.B., Voshkin A.A. application of hydrophobic deep eutectic solvents in extraction of metals from real solutions obtained by leaching cathodes from end-of-life Li-Ion batteries // Processes. 2022. V. 10. P. 2671.
- 17. Drogobuzhskaya S., Frolova M., Shishov A., Tsvetov N. Comparison of extraction abilities of deep eutectic solvents and aqueous acid solutions for extraction of rare earths and transition metals // J. Rare Earths. 2023.
- 18. van Osch D.J.G.P., Zubeir L.F., van den Bruinhorst A., Rocha M.A.A., Kroon M.C. Hydrophobic deep eutectic solvents as water-immiscible extractants // Green Chemistry. 2015. V. 7. P. 4518–4521.
- 19. Tereshatov E.E., Boltoeva M. Yu., Folden C.M. First evidence of metal transfer into hydrophobic deep eutectic and low-transition-temperature mixtures: indium extraction from hydrochloric and oxalic acids // Green Chemistry. 2016. V. 18. P. 4616–4622.
- 20. van Osch D.J.G.P., Parmentier D., Dietz C.H.J.T., van den Bruinhorst A., Tuinier R., Kroon M.C. Removal of alkali and transition metal ions from water with hydrophobic deep eutectic solvents // Chemical Communications. 2016. V. 52. P. 11987–11990.
- 21. Hanada T., Goto M. Synergistic deep eutectic solvents for lithium extraction // ACS Sustain. Chem. Eng. 2021. V. 9. P. 2152–2160.
- 22. Francis T., Prasada Rao T., Reddy M.L.P. Cyanex 471X as extractant for the recovery of Hg(II) from industrial wastes // Hydrometallurgy. 2000. V. 57. P. 263–268.
- 23. Martínez S., Navarro P., Sastre A.M., Alguacil F.J. The solvent extraction system Au(III) – HCl-Cyanex 471X // Hydrometallurgy. 1996. V. 43. P. 1–12.
- 24. Kozhevnikova A.V., Milevskii N.A., Zinov’eva I.V., Zakhodyaeva Yu.A., Voshkin A.A. A flow-chart for processing of a lithium-manganese battery using hdes aliquat 336/menthol // Theor. Found. Chem. Eng. 2022. V. 56. P. 650–654.
- 25. Kozhevnikova A.V., Uvarova E.S., Lobovich D.V., Milevskii N.A., Zakhodyaeva Yu.A., Voshkin A.A. Extraction of Ti(IV) ions from chloride solutions with the aliquat 336–menthol hydrophobic deep eutectic solvent // Theor. Found. Chem. Eng. 2023. V. 57. P. 1261–1267.
- 26. White A.H., Bishop W.S. Dielectric evidence of molecular rotation in the crystals of certain non-aromatic compounds // J. Am. Chem. Soc. 1940. V. 62. P. 8–16.
- 27. Olushola S.A., Folahan A.A., Alafara A.B., Bhekumusa J.X., Olalekan S.F. Application of cyanex extractant in cobalt/nickel separation process by solvent extraction // Int. J. Phys. Sci. 2013. V. 8. P. 89–97.
- 28. Abranches D.O., Coutinho J.A.P. everything you wanted to know about deep eutectic solvents but were afraid to be told // Annu. Rev. Chem. Biomol. Eng. 2023. V. 14. P. 141–163.
- 29. Schaeffer N., Martins M.A.R., Neves C.M.S.S., Pinho S.P., Coutinho J.A.P. Sustainable Hydrophobic Terpene-Based Eutectic Solvents for the Extraction and Separation of Metals. Chemical Communications 2018, 54, 8104–8107, doi:10.1039/C8CC04152K.
- 30. Lemaoui T., Darwish A.S., Attoui, A., Abu Hatab F., Hammoudi N.E.H., Benguerba Y., Vega L.F., Alnashef I.M. Predicting the Density and Viscosity of Hydrophobic Eutectic Solvents: Towards the Development of Sustainable Solvents. Green Chemistry 2020, 22, 8511–8530, doi:10.1039/D0GC03077E.
- 31. Zinov’eva I. V., Kozhevnikova A. V., Milevskii N.A., Zakhodyaeva Y.A., Voshkin A.A. New Hydrophobic Eutectic Solvent Based on Bis(2,4,4-Trimethylpentyl)Phosphinic Acid and Menthol: Properties and Application. In Proceedings of the ECP 2023; MDPI: Basel Switzerland, May 17 2023; p. 68.
- 32. Bishimbayeva G.K., Gusarova N.K., Nalibayeva A.M., Verkhoturova S.I., Bold A., Chernysheva N.A. et al. Synthesis and properties of sulfur-containing organophosphorus extractants based on red phosphorus, alkyl bromides, and elemental sulfur // Materials. 2023. V. 16. P. 3394.
- 33. Milevskii N.A., Zinov’eva I.V., Kozhevnikova A.V., Zakhodyaeva Y.A., Voshkin A.A. Sm/Co magnetic materials: a recycling strategy using modifiable hydrophobic deep eutectic solvents based on trioctylphosphine oxide // Int. J. Mol. Sci. 2023. V. 24. P. 14032.
- 34. Sahu S., Mohanty A., Devi N. Application of various extractants for liquid-liquid extraction of lithium // Mater. Today Proc. 2023. V. 76. P. 190–193.
- 35. Bezdomnikov A.A., Kostikova G.V., Baulin D.V., Tsivadze A. Yu. Liquid extraction of lithium using a mixture of alkyl salicylate and tri-n-octylphosphine oxide // Sep. Purif. Technol. 2023. V. 320. P. 124137.
- 36. Milevskii N.A., Zinov’eva I.V., Zakhodyaeva Yu.A., Voshkin A.A. Separation of Li(I), Co(II), Ni(II), Mn(II), and Fe(III) from hydrochloric acid solution using a menthol-based hydrophobic deep eutectic solvent // Hydrometallurgy. 2022. V. 207. P. 105777.
- 37. Rout A., Binnemans K. Liquid–Liquid extraction of europium(III) and other trivalent rare-earth ions using a non-fluorinated functionalized ionic liquid // Dalton Trans. 2014. V. 43. P. 1862–1872.
- 38. Cueva Sola A.B., Parhi P.K., Lee J.-Y., Kang H.N., Jyothi R.K. Environmentally friendly approach to recover vanadium and tungsten from spent SCR catalyst leach liquors using aliquat 336 // RSC Adv. 2020. V. 10. P. 19736–19746.