RAS Chemistry & Material ScienceТеоретические основы химической технологии Theoretical Foundations of Chemical Engineering

  • ISSN (Print) 0040-3571
  • ISSN (Online) 3034-6053

Экстракция Li(I), Al(III) и Fe(III) из солянокислых растворов гидрофобным эвтектическим растворителем ТБФС/ментол

PII
10.31857/S0040357124020081-1
DOI
10.31857/S0040357124020081
Publication type
Article
Status
Published
Authors
Volume/ Edition
Volume 58 / Issue number 2
Pages
202-210
Abstract
Теоретические основы химической технологии, Экстракция Li(I), Al(III) и Fe(III) из солянокислых растворов гидрофобным эвтектическим растворителем ТБФС/ментол
Keywords
Date of publication
16.09.2025
Year of publication
2025
Number of purchasers
0
Views
6

References

  1. 1. Saju D., Ebenezer J., Chandran N., Chandrasekaran N. Recycling of lithium iron phosphate cathode materials from spent lithium-ion batteries: a mini-review // Ind. Eng. Chem. Res. 2023. V. 62. P. 11768–11783.
  2. 2. Padhi A.K., Nanjundaswamy K.S., Goodenough J.B. Phospho‐olivines as positive‐electrode materials for rechargeable lithium batteries // J. Electrochem. Soc. 1997. V. 144. P. 1188–1194.
  3. 3. Miao Y., Hynan P., von Jouanne A., Yokochi A. Current Li-Ion battery technologies in electric vehicles and opportunities for advancements // Energies (Basel). 2019. V. 12. P. 1074.
  4. 4. Harper G., Sommerville R., Kendrick E., Driscoll L., Slater P., Stolkin R. et al. Recycling Lithium-Ion batteries from electric vehicles // Nature. 2019. V. 575. P. 75–86.
  5. 5. Ordoñez J., Gago E.J., Girard A. Processes and Technologies for the recycling and recovery of spent Lithium-Ion batteries // Renewable and Sustainable Energy Reviews. 2016. V. 60. P. 195–205.
  6. 6. Forte F., Pietrantonio M., Pucciarmati S., Puzone M., Fontana D. Lithium Iron Phosphate batteries recycling: an assessment of current status // Crit. Rev. Environ. Sci. Technol. 2021. V. 51. P. 2232–2259.
  7. 7. Wang W., Wu Y. An overview of recycling and treatment of spent LiFePO 4 batteries in China // Resour. Conserv. Recycl. 2017. V. 127. P. 233–243.
  8. 8. Narbutt, J. Fundamentals of Solvent Extraction of Metal Ions. In Liquid-Phase Extraction; Elsevier, 2020; P. 121–155.
  9. 9. Liu, C.; Cao, Y.; Sun, W.; Zhang, T.; Wu, H.; Liu, Q.; Rao, Z.; Gu, Y. Highly Efficient Lithium-Ion Battery Cathode Material Recycling Using Deep Eutectic Solvent Based Nanofluids. RSC Sustainability 2023, 1, 270–281, doi:10.1039/D2SU00047D.
  10. 10. Zheng Q., Zeng L., Cao Z., Wu S., Li Q., Wang M. et al. A green and efficient process for the stepwise extraction of Cu, Ni, Co, Mn, and Li from Hazardous waste with a novel solvent extraction system of D2EHPA-NNPA // Green Chemistry. 2023. V. 25. P. 10020–10032.
  11. 11. Wang K., Adidharma H., Radosz M., Wan P., Xu X., Russell C.K. et al. Recovery of rare earth elements with Ionic liquids // Green Chemistry. 2017. V. 19. P. 4469–4493.
  12. 12. Qiao W., Zhang R., Wen Y., Wang X., Wang Z., Tang G. et al. Green solvents in battery recycling: status and challenges // J. Mater. Chem. A Mater. 2024.
  13. 13. Zakhodyaeva Yu.A., Zinov’eva I.V. Extraction of Pt(IV) and Pd(II) from hydrochloric acid solutions using polypropylene glycol 425 // Theoret. Found. Chem. Eng. 2021. V. 55. P. 282–289.
  14. 14. Gilmore M., McCourt É.N., Connolly F., Nockemann P., Swadźba-Kwaśny M., Holbrey J.D. Hydrophobic deep eutectic solvents incorporating trioctylphosphine oxide: advanced liquid extractants // ACS Sustain Chem. Eng. 2018. V. 6. P. 17323–17332.
  15. 15. Wazeer I., Hizaddin H.F., Hashim M.A., Hadj-Kali M.K. An overview about the extraction of heavy metals and other critical pollutants from contaminated water via hydrophobic deep eutectic solvents // J. Environ. Chem. Eng. 2022. V. 10. P. 108574.
  16. 16. Kozhevnikova A.V., Zinov’eva I.V., Zakhodyaeva Y.A., Baranovskaya V.B., Voshkin A.A. application of hydrophobic deep eutectic solvents in extraction of metals from real solutions obtained by leaching cathodes from end-of-life Li-Ion batteries // Processes. 2022. V. 10. P. 2671.
  17. 17. Drogobuzhskaya S., Frolova M., Shishov A., Tsvetov N. Comparison of extraction abilities of deep eutectic solvents and aqueous acid solutions for extraction of rare earths and transition metals // J. Rare Earths. 2023.
  18. 18. van Osch D.J.G.P., Zubeir L.F., van den Bruinhorst A., Rocha M.A.A., Kroon M.C. Hydrophobic deep eutectic solvents as water-immiscible extractants // Green Chemistry. 2015. V. 7. P. 4518–4521.
  19. 19. Tereshatov E.E., Boltoeva M. Yu., Folden C.M. First evidence of metal transfer into hydrophobic deep eutectic and low-transition-temperature mixtures: indium extraction from hydrochloric and oxalic acids // Green Chemistry. 2016. V. 18. P. 4616–4622.
  20. 20. van Osch D.J.G.P., Parmentier D., Dietz C.H.J.T., van den Bruinhorst A., Tuinier R., Kroon M.C. Removal of alkali and transition metal ions from water with hydrophobic deep eutectic solvents // Chemical Communications. 2016. V. 52. P. 11987–11990.
  21. 21. Hanada T., Goto M. Synergistic deep eutectic solvents for lithium extraction // ACS Sustain. Chem. Eng. 2021. V. 9. P. 2152–2160.
  22. 22. Francis T., Prasada Rao T., Reddy M.L.P. Cyanex 471X as extractant for the recovery of Hg(II) from industrial wastes // Hydrometallurgy. 2000. V. 57. P. 263–268.
  23. 23. Martínez S., Navarro P., Sastre A.M., Alguacil F.J. The solvent extraction system Au(III) – HCl-Cyanex 471X // Hydrometallurgy. 1996. V. 43. P. 1–12.
  24. 24. Kozhevnikova A.V., Milevskii N.A., Zinov’eva I.V., Zakhodyaeva Yu.A., Voshkin A.A. A flow-chart for processing of a lithium-manganese battery using hdes aliquat 336/menthol // Theor. Found. Chem. Eng. 2022. V. 56. P. 650–654.
  25. 25. Kozhevnikova A.V., Uvarova E.S., Lobovich D.V., Milevskii N.A., Zakhodyaeva Yu.A., Voshkin A.A. Extraction of Ti(IV) ions from chloride solutions with the aliquat 336–menthol hydrophobic deep eutectic solvent // Theor. Found. Chem. Eng. 2023. V. 57. P. 1261–1267.
  26. 26. White A.H., Bishop W.S. Dielectric evidence of molecular rotation in the crystals of certain non-aromatic compounds // J. Am. Chem. Soc. 1940. V. 62. P. 8–16.
  27. 27. Olushola S.A., Folahan A.A., Alafara A.B., Bhekumusa J.X., Olalekan S.F. Application of cyanex extractant in cobalt/nickel separation process by solvent extraction // Int. J. Phys. Sci. 2013. V. 8. P. 89–97.
  28. 28. Abranches D.O., Coutinho J.A.P. everything you wanted to know about deep eutectic solvents but were afraid to be told // Annu. Rev. Chem. Biomol. Eng. 2023. V. 14. P. 141–163.
  29. 29. Schaeffer N., Martins M.A.R., Neves C.M.S.S., Pinho S.P., Coutinho J.A.P. Sustainable Hydrophobic Terpene-Based Eutectic Solvents for the Extraction and Separation of Metals. Chemical Communications 2018, 54, 8104–8107, doi:10.1039/C8CC04152K.
  30. 30. Lemaoui T., Darwish A.S., Attoui, A., Abu Hatab F., Hammoudi N.E.H., Benguerba Y., Vega L.F., Alnashef I.M. Predicting the Density and Viscosity of Hydrophobic Eutectic Solvents: Towards the Development of Sustainable Solvents. Green Chemistry 2020, 22, 8511–8530, doi:10.1039/D0GC03077E.
  31. 31. Zinov’eva I. V., Kozhevnikova A. V., Milevskii N.A., Zakhodyaeva Y.A., Voshkin A.A. New Hydrophobic Eutectic Solvent Based on Bis(2,4,4-Trimethylpentyl)Phosphinic Acid and Menthol: Properties and Application. In Proceedings of the ECP 2023; MDPI: Basel Switzerland, May 17 2023; p. 68.
  32. 32. Bishimbayeva G.K., Gusarova N.K., Nalibayeva A.M., Verkhoturova S.I., Bold A., Chernysheva N.A. et al. Synthesis and properties of sulfur-containing organophosphorus extractants based on red phosphorus, alkyl bromides, and elemental sulfur // Materials. 2023. V. 16. P. 3394.
  33. 33. Milevskii N.A., Zinov’eva I.V., Kozhevnikova A.V., Zakhodyaeva Y.A., Voshkin A.A. Sm/Co magnetic materials: a recycling strategy using modifiable hydrophobic deep eutectic solvents based on trioctylphosphine oxide // Int. J. Mol. Sci. 2023. V. 24. P. 14032.
  34. 34. Sahu S., Mohanty A., Devi N. Application of various extractants for liquid-liquid extraction of lithium // Mater. Today Proc. 2023. V. 76. P. 190–193.
  35. 35. Bezdomnikov A.A., Kostikova G.V., Baulin D.V., Tsivadze A. Yu. Liquid extraction of lithium using a mixture of alkyl salicylate and tri-n-octylphosphine oxide // Sep. Purif. Technol. 2023. V. 320. P. 124137.
  36. 36. Milevskii N.A., Zinov’eva I.V., Zakhodyaeva Yu.A., Voshkin A.A. Separation of Li(I), Co(II), Ni(II), Mn(II), and Fe(III) from hydrochloric acid solution using a menthol-based hydrophobic deep eutectic solvent // Hydrometallurgy. 2022. V. 207. P. 105777.
  37. 37. Rout A., Binnemans K. Liquid–Liquid extraction of europium(III) and other trivalent rare-earth ions using a non-fluorinated functionalized ionic liquid // Dalton Trans. 2014. V. 43. P. 1862–1872.
  38. 38. Cueva Sola A.B., Parhi P.K., Lee J.-Y., Kang H.N., Jyothi R.K. Environmentally friendly approach to recover vanadium and tungsten from spent SCR catalyst leach liquors using aliquat 336 // RSC Adv. 2020. V. 10. P. 19736–19746.
QR
Translate

Индексирование

Scopus

Scopus

Scopus

Crossref

Scopus

Higher Attestation Commission

At the Ministry of Education and Science of the Russian Federation

Scopus

Scientific Electronic Library