RAS Chemistry & Material ScienceТеоретические основы химической технологии Theoretical Foundations of Chemical Engineering

  • ISSN (Print) 0040-3571
  • ISSN (Online) 3034-6053

Интенсификация массообмена в газожидкостном аппарате с мешалкой

PII
10.31857/S0040357124020108-1
DOI
10.31857/S0040357124020108
Publication type
Article
Status
Published
Authors
Volume/ Edition
Volume 58 / Issue number 2
Pages
222-229
Abstract
Теоретические основы химической технологии, Интенсификация массообмена в газожидкостном аппарате с мешалкой
Keywords
Date of publication
23.04.2024
Year of publication
2024
Number of purchasers
0
Views
35

References

  1. 1. Scargiali F., Busciglio A., Grisafi F., Brucato A. Oxygen transfer performance of unbaffled stirred vessels in view of their use as biochemical reactors for animal cell growth // Chem. Eng. Trans. 2012. V. 27. P. 205. https://doi.org/10.3303/CET1227035
  2. 2. Tsao G.T.N. Vortex behavior in the waldhof fermentor // Biotechnol. Bioeng. 1968. V. 10. № 2. P. 177. https://doi.org/10.1002/bit.260100206
  3. 3. Соколов В.Н., Яблокова М.А. Аппаратура микробиологической промышленности. Л.: Машиностроение, 1988.
  4. 4. Rao A., Kumar B., Patel A. Vortex behavior in an unbaffled surface aerator // Sci. Asia. 2009. V. 35. P. 183. https://doi.org/10.2306/scienceasia1513-1874.2009.35.183
  5. 5. Scargiali F., Busciglio A., Grisafi F., Brucato A. Gas–liquid–solid operation of a high aspect ratio self-ingesting reactor // Int. J. Chem. Reactor Eng. 2012. V. 10. № 1. Р. 839–845. https://doi.org/10.1515/1542-6580.3011
  6. 6. Poncin S., Nguyen C., Midoux N., Breysse J. Hydrodynamics and volumetric gas–liquid mass transfer coefficient of a stirred vessel equipped with a gas-inducing impeller // Chem. Eng. Sci. 2002. V. 57. № 16. P. 3299. https://doi.org/10.1016/S0009-2509 (02)00200-2
  7. 7. Saravanan K., Mundale V.D., Joshi J.B. Gas Inducing Type Mechanically Agitated Contactors // Ind. Eng. Chem. Res. 1994. V. 33. № 9. P. 2226. DOI: https://doi.org/10.1021/ie00033a029
  8. 8. Newell R., Grano S. Hydrodynamics and scale up in Rushton turbine flotation cells: Part 2. Flotation scale-up for laboratory and pilot cells // Int. J. Min. Process. 2006. V. 81. № 2. P. 65. https://doi.org/10.1016/j.minpro.2006.07.002
  9. 9. Соколов В.Н., Доманский И.В. Газожидкостные реакторы. Л.: Машиностроение, 1976.
  10. 10. Busciglio A., Caputo G., Scargiali F. Free-surface shape in unbaffled stirred vessels: Experimental study via digital image analysis // Chem. Eng. Sci. 2013. V. 104. P. 868. https://doi.org/10.1016/j.ces.2013.10.019
  11. 11. Deshpande S.S., Kar K.K., Walker J., Pressler J., Su W. An experimental and computational investigation of vortex formation in an unbaffled stirred tank // Chem. Eng. Sci. 2017. V. 168. P. 495. https://doi.org/.1016/j.ces.2017.04.002
  12. 12. Ciofalo M., Brucato A., Grisafi F., Torraca N. Turbulent flow in closed and free-surface unbaffled tanks stirred by radial impellers // Chem. Eng. Sci. 1996. V. 51. № 14. P. 3557. https://doi.org/10.1016/0009-2509 (96)00004-8
  13. 13. Rielly C.D., Evans G.M., Davidson J.F., Carpenter K.J. Effect of vessel scaleup on the hydrodynamics of a self-aerating concave blade impeller // Chem. Eng. Sci. 1992. V. 47. № 13–14. P. 3395. https://doi.org/10.1016/0009-2509 (92)85050-L
  14. 14. Hsu Y.C., Chen T.Y., Chen J.H., Lay C.W. Ozone Transfer into Water in a Gas-Inducing Reactor // Ind. Eng. Chem. Res. 2002. V. 41. № 1. P. 120. https://doi.org/10.1021/ie0101341
  15. 15. Conway K., Kyle A., Rielly C. Gas–liquid–solid operation of a vortex-ingesting stirred tank reactor // Chem. Eng. Res. Des. 2002. V. 80. № 8. P. 839. https://doi.org/10.1205/026387602321143372
  16. 16. Hsu Y.C., Huang C.J. Characteristics of a new gas-induced reactor // AIChE J. 1994. V. 42. № 11. P. 3146.
  17. 17. Joshi J.B., Sharma M.M. Mass transfer and hydrodynamic characteristics of gas inducing type of agitated contactors // Can. J. Chem. Eng. 1977. V. 55. № 6. P. 683. https://doi.org/10.1002/cjce.5450550609
  18. 18. Forrester S.E., Rielly C.D. Modelling the increased gas capacity of self-inducing impellers // Chem. Eng. Sci. 1994. V. 49. № 24. P. 5709. https://doi.org/10.1016/0009-2509 (94)00322-X
  19. 19. Heim A., Krasawski A., Rzyski E., Stelmach J. Aeration of bioreactors by self-aspirating impellers // The Chem. Eng. J. Biochem. Eng. J. 1995. V. 58. № 1. P. 59. https://doi.org/10.1016/0923-0467 (94)06093-2
  20. 20. Хультхольм С-Э., Юсела М., Лилья Л., Нюман Б. Перемешивающий аппарат и способ перемешивания газа в закрытом реакторе. Пат. ЕА003815В1. 2003.
  21. 21. Войнов Н.А., Земцов Д.А., Фролов А.С. Способ насыщения жидкости газом в аппарате с мешалкой. Пат. 2790167 РФ. 2023
  22. 22. Voinov N.A., Frolov A.S., Bogatkova A.V., Zemtsov D.A., Zhukova O.P. Method for Intensive Gas–Liquid Dispersion in a StirredTank // Chem. Eng. 2023. V. 7. № 2. P. 30. https://doi.org/10.3390/chemengineering7020030
  23. 23. Хабибрахманов Р.Б., Мухачев С.Г. Особенности мощностных и массообменных характеристик биореактора с дисковыми перфорированными мешалками // Изв. вузов. Прикл. химия и биотехнол. 2019. Т. 9. № 4. https://doi.org/10.21285/2227-2925-2019-9-4-737-749 [Khabibrakhmanov R.B., Mu- khachev S.G. Features of the powerful and mass exchange characteristics of a bioreactor with disk perforated mixers // Izv. universities. Graff. Chemistry and biotechnology. 2019. T. 9. № 4. https://doi.org/10.21285/2227-2925-2019-9-4-737-749]
  24. 24. Scargiali F., Busciglio A., Grisafi F., Brucato A. Simplified dynamic pressure method for measurement in aerated bioreactors // Biochem. Eng. J. 2010. V. 49. № 2. P. 165. https://doi.org/10.1016/j.bej.2009.12.008
  25. 25. Scargiali F., Russo R., Grisafi F., Brucato A. Mass transfer and hydrodynamic characteristics of a high aspect ratio self-ingesting reactor for gas–liquid operations // Chem. Eng. Sci. 2007. V. 62. № 5. P. 1376. https://doi.org/10.1016/j.ces.2006.11.040
  26. 26. Рамм В.М. Абсорбция газов. М.: Химия, 1976.
  27. 27. Вознесенский А.С. Компьютерные методы в научных исследованиях. Часть 2. М.: МГГУ, 2010.
  28. 28. El-Behery S.M., Hamed M.H. A comparative study of turbulence models performance for separating flow in a planar asymmetric diffuser // Comput. Fluids. 2011. V. 44. № 1. P. 248. https://doi.org/10.1016/j.compfluid.2011.01.009
QR
Translate

Индексирование

Scopus

Scopus

Scopus

Crossref

Scopus

Higher Attestation Commission

At the Ministry of Education and Science of the Russian Federation

Scopus

Scientific Electronic Library