- PII
- 10.31857/S0040357124040022-1
- DOI
- 10.31857/S0040357124040022
- Publication type
- Article
- Status
- Published
- Authors
- Volume/ Edition
- Volume 58 / Issue number 4
- Pages
- 413-419
- Abstract
- Схема ультразвуковой кавитационной экстракции использует растворение отработанного материала в глубоком эвтектическом растворителе для съема его с подложки с последующим извлечением ценного элемента методом ультразвуковых жидких мембран. Выполнено детальное описание этого метода для случая применения мощного ультразвука в типичных условиях кавитации, вызванной стоячими ультразвуковыми волнами, когда ее порог заметно превышен и процесс экстракции определяется кавитационными параметрами и ограничениями. Получено выражение для поведения во времени количества экстрагируемого элемента и зависимости этого параметра от величины акустического давления. Найдено пространственное распределение скорости акустического течения, вызванного кавитацией, в одномерном случае.
- Keywords
- Date of publication
- 07.08.2024
- Year of publication
- 2024
- Number of purchasers
- 0
- Views
- 46
References
- 1. Li H., Eksteen, J., Oraby E. Hydrometallurgical recovery of metals from waste printed circuit boards (WPCBs): Current status and perspectives – A review. Resour., Conserv. Recycl. 2018. V. 139. P.2.
- 2. Sun Z., Cao H., Xiao Y., Sietsma J., Jin W., Agterhuis H., Yang Y. Toward Sustainability for Recovery of Critical Metals from Electronic Waste: The Hydrochemistry Processes. ACS Sustainable Chem. Eng. 2016. V. 5. № 1. P. 21.
- 3. Fedorova M.I., Zakhodyaeva Y.A., Baranchikov A.E., Krenev V.A., Voshkin A.A. Extraction reprocessing of Fe,Ni-containing parts of Ni–MH batteries. Russ. J. Inorg. Chem. 2021. V. 66. P. 266.
- 4. Zakhodyaeva Y.A., Izyumova K.V., Solov’eva M.S., Voshkin A.A. Extraction separation of the components of leach liquors of batteries. // Theor. Found. Chem. Eng. 2017. V. 51. P. 883.
- 5. Alvial-Hein G., Mahandra H., Ghahreman A. Separation and recovery of cobalt and nickel from end of life products via solvent extraction technique: A review. J. Clean. Prod. 2021. V. 297. P. 126592.
- 6. Thompson D.L., Hartley J.M., Lambert S.M., Shiref M., Harper G.D.J., Kendrick E. et al. The importance of design in lithium ion battery recycling – a critical review. Green Chem. 2020. V. 22. P. 7585.
- 7. Nitta N., Wu F., Lee J.T., Yushin G. Li-Ion Battery Materials: Present and Future // Materials Today. 2015. V. 18. P. 252.
- 8. Harper G., Sommerville R., Kendrick E., Driscoll L., Slater P., Stolkin R. et al. Recycling lithium-ion batteries from electric vehicles // Nature. 2019. V. 575. P. 75.
- 9. Xie J., Lu Y.-C.A. Retrospective on Lithium-Ion Batteries // Nat. Commun. 2020. V. 11. P. 2499.
- 10. Torkaman R., Asadollahzadeh M., Torab-Mostaedi M., GhanadiMaragheh M. Recovery of cobalt from spent lithium ion batteries by using acidic and basic extractants in solvent extraction process // Sep. Purif. Technol. 2017. V. 186. P. 318.
- 11. Fan E., Li L., Wang Z., Lin J., Huang Y., Yao Y., Chen R., Wu F. Sustainable Recycling Technology for Li-Ion Batteries and Beyond: Challenges and Future Prospects // Chem. Rev. 2020. V.1 20. P. 7020.
- 12. Ma Y., Svärd M., Xiao X., Gardner J.M., Olsson R.T., Forsberg K. Precipitation and Crystallization used in the production of metal salts for li-ion battery materials: a review // Metals. 2020. V. 10. P. 1609.
- 13. Zhang T., He Y., Ge L., Fu R., Zhang X., Huang, Y. Characteristics of wet and dry crushing methods in the recycling process of spent lithium-ion batteries // J. Power Sources. 2013. V. 240. P. 766.
- 14. Chen L., Tang X., Zhang Y., Li L., Zeng Z., Zhang Y. Process for the recovery of cobalt oxalate from spent lithium-ion batteries // Hydrometallurgy. 2011. V. 108. P. 80.
- 15. Li J., Shi P., Wang Z., Chen Y., Chang C.-C. A combined recovery process of metals in spent lithium-ion batteries // Chemosphere. 2009. V. 77. P. 1132.
- 16. Wang M., Tan Q., Liu L., Li J. Efficient separation of aluminum foil and cathode materials from spent lithium-ion batteries using a low-temperature molten salt // ACS Sustain Chem. Eng. 2019. V. 7. P. 8287.
- 17. Zou H., Gratz E., Apelian D., Wang Y.A Novel method to recycle mixed cathode materials for lithium ion batteries // Green Chemistry. 2013. V. 15. P. 1183.
- 18. Zeng X., Li J. Innovative application of ionic liquid to separate al and cathode materials from spent high-power lithium-ion batteries // J. Hazard Mater. 2014. V. 271. P. 50.
- 19. Gu K., Chang J., Mao X., Zeng H., Qin W., Han J. Efficient separation of cathode materials and al foils from spent lithium batteries with glycerol heating: a green and unconventional way // J. Clean Prod. 2022. V. 369. P. 133270.
- 20. Wang H., Liu J., Bai X., Wang S., Yang D., Fu Y., He Y. Separation of the cathode materials from the al foil in spent lithium-ion batteries by cryogenic grinding // Waste Management. 2019. V. 91. P. 89.
- 21. Zinov’eva I.V., Fedorov A.Ya., Milevskii N.A., Zakhodyaeva Yu.A., Voshkin A.A. Dissolution of metal oxides in a choline chloride–sulphosalicylic acid deep eutectic solvent // Theor. Found. Chem. Eng. 2021. V. 55. P. 663.
- 22. Ijardar S.P., Singh V., Gardas R.L. Revisiting the physicochemical properties and applications of deep eutectic solvents // Molecules. 2022. V. 27. P. 1368.
- 23. Gradov O.M., Zinov’eva I. V., Zakhodyaeva Y.A., Voshkin A.A. Modelling of the erosive dissolution of metal oxides in a deep eutectic solvent-choline chloride/sulfosalicylic acid-assisted by ultrasonic cavitation // Metals. 2021. V. 11. P. 1964.
- 24. Zinov’eva I. V., Fedorov A.Ya., Milevskii N.A., Zakhodyaeva Yu.A., Voshkin A.A. A deep eutectic solvent based on choline chloride and sulfosalicylic acid: properties and applications // Theor. Found. Chem. Eng. 2021. V. 55. P. 371.
- 25. Gradov O.M., Zinov’eva I.V., Zakhodyaeva Yu.A., Voshkin A.A. Kinetics of ultrasonic dissolution of metal oxide powder for different spatial combinations of the cavitation region and eckart acoustic flow // Theor. Found. Chem. Eng. 2023. V. 57. P. 255.
- 26. Gradov O.M., Zakhodyaeva Yu.A., Zinov’eva I.V. and Voshkin A.A. Some features of the ultrasonic liquid extraction of metal ions. // Molecules. 2019. V. 24. 3549.
- 27. Gradov O.M., Zakhodyaeva Yu.A., Voshkin A.A. Dynamics of mass transfer through the interface between immiscible liquids under the resonance effect of ultrasound // Theor. Found. Chem. Eng. 2020. V. 54. № 6. P. 1148.
- 28. Gradov O.M., Zakhodyaeva Yu.A., Zinov’eva I.V., Voshkin A.A. Ultrasonic intensification of mass transfer in organic acid extraction // Processes. 2021. V. 9. P. 15.
- 29. Flynn H.G. Physics of Acoustic Cavitations in Liquids // Physical acoustics – Principles and methods. N.Y.: Academic Press, 1964. P. 376.
- 30. Gradov O.M., Zakhodyaeva Yu.A., Voshkin A.A. Breakup of immiscible liquids at the interface using high-power acoustic pulses // Chem. Eng. Proc.: Proc. Intens. 2018. V. 131. P. 125.
- 31. Voshkin A.A., Gradov O.M. Parametric splitting and transfer of liquid cuts for the intensification of mass exchange in a cylindrical volume // Theor. Found. Chem. Eng. 2017, V. 51. № 3. P. 274.
- 32. Розенберг Л.Д. Кавитационная область. Мощные ультразвуковые поля / Под ред. Л.Д. Розенберга, Наука, 1968. С. 221.