RAS Chemistry & Material ScienceТеоретические основы химической технологии Theoretical Foundations of Chemical Engineering

  • ISSN (Print) 0040-3571
  • ISSN (Online) 3034-6053

О влиянии распределения удельной скорости диссипации на эффективность массопереноса в аппаратах с жидкофазными средами

PII
10.31857/S0040357124060126-1
DOI
10.31857/S0040357124060126
Publication type
Article
Status
Published
Authors
Volume/ Edition
Volume 58 / Issue number 6
Pages
791-810
Abstract
Теоретические основы химической технологии, О влиянии распределения удельной скорости диссипации на эффективность массопереноса в аппаратах с жидкофазными средами
Keywords
Date of publication
16.09.2025
Year of publication
2025
Number of purchasers
0
Views
4

References

  1. 1. Teychené S., Rodríguez-Ruiz I., Ramamoorthy R.K. Reactive crystallization: From mixing to control of kinetics by additives// Current Opinion in Colloid & Interface Science. 2020. V. 46. P. 1. https://doi.org/10.1016/j.cocis.2020.01.003;
  2. 2. Bałdyga J. Mixing and fluid dynamics effects in particle precipitation processes. KONA Powder Part J 2016, 33:127.
  3. 3. Villermaux J. Micromixing phenomena in stirred reactors. Encyclopedia of fluid mechanics. Houston: Gulf Publishing Company. 1986
  4. 4. Patil S., Kate P.R., Deshpande J.B., Kulkarni A.A. Quantitative understanding of nucleation and growth kinetics of silver nanowires// Chem. Eng. J. 2021. V. 414. I. 128711. https://doi.org/10.1016/j.cej.2021.128711
  5. 5. Tanimu A., Jaenicke S., Alhooshani K. Heterogeneous catalysis in continuous flow microreactors: A review of methods and applications// Chem. Eng. J. 2017. V. 327. P. 792. https://doi.org/10.1016/j.cej.2017.06.161
  6. 6. Vacassy R., Lemaître J., Hofmann H., Gerlings J.H. Calcium carbonate precipitation using new segmented flow tubular reactor// AIChE J. 2000. V. 46. P. 1241.
  7. 7. Zhao C.-X., He L., Qiao S.Z., Middelberg A.P.J. Nanoparticle synthesis in microreactors // Chem. Eng. Sci. 2011. Vol. 66. P. 1463. https://doi.org/10.1016/j.ces.2010.08.039
  8. 8. Nightingale A.M., deMello J.C. Segmented Flow Reactors for Nanocrystal Synthesis // Advanced Materials. 2013. V. 25. № 13. P. 1813. http://dx.doi.org/10.1002/adma.201203252
  9. 9. Abiev R.S., Kudryashova Y.S., Zdravkov A.V., Fedorenko N.Y. Micromixing and Co-Precipitation in Continuous Microreactors with Swirled Flows and Microreactors with Impinging Swirled Flows // Inorganics. 2023. V. 11. Paper 49. https://doi.org/10.3390/inorganics11020049
  10. 10. Paseta L., Seoane B., Julve D. et al. Accelerating the Controlled Synthesis of Metal–Organic Frameworks by a Microfluidic Approach: A Nanoliter Continuous Reactor. ACS Applied Materials & Interfaces. 2013. V. 5 (19). P. 9405.
  11. 11. Mu Z., Zhu Y., Li B. et al. Covalent Organic Frameworks with Record Pore Apertures // Journal of the American Chemical Society. 2022. V. 144 (11). P. 5145.
  12. 12. Stock N., Biswas S. Synthesis of Metal-Organic Frameworks (MOFs): Routes to Various MOF Topologies, Morphologies, and Composites. Chemical Reviews. 2012. V. 112 (2). P. 933.
  13. 13. Klapötke Th.M., Sabaté C.M., Stierstorfer J. Neutral 5-nitrotetrazoles: easy initiation with low pollution // New J. Chem. 2009. V. 33. P. 136. https://doi.org/10.1039/b812529e
  14. 14. Abiev R.Sh., Makusheva I.V. Effect of Macro- and Micromixing on Processes Involved in Solution Synthesis of Oxide Particles in High-Swirl Microreactors // Theor. Found. Chem. Eng. 2022. V. 56. P. 141. https://doi.org/10.1134/S0040579522020014
  15. 15. Abiev R.Sh., Makusheva I.V., Mironova A.I. Comparison of hydrodynamics and micromixing quality in a two-stage microreactor with intensely swirled flows and in a T-mixer // Chem. Eng. & Proc.: Proc. Intens. 2024. CEP 109829 https://doi.org/10.1016/j.cep.2024.109829
  16. 16. Ottino J.M., Ranz W.E., Macosko C.W. A lamellar model for analysis of liquid-liquid mixing// Chem. Eng. Sci. 1979. V. 34. Р. 877.
  17. 17. Bałdyga J., Rozen A., Mostert F. A model of laminar micromixing with application to parallel chemical reactions// Chem. Eng. J. 1998. V. 69. Р. 7.
  18. 18. Falk L., Commenge J.-M. Performance comparison of micromixers // Chem. Eng. Sci. 2010. V. 65. P. 405. https://doi.org/10.1016/j.ces.2009.05.045
  19. 19. Fournier M.-C., Falk L., Villermaux J. A new parallel competing reaction system for assessing micromixing efficiency – Determination of micromixing time by a simple mixing model // Chem. Eng. Sci. 1996. V. 51. № 23. P. 5187. https://doi.org/10.1016/S0009-2509 (96)00340-5
  20. 20. Commenge J.-M., Falk L. Villermaux–Dushman protocol for experimental characterization of micromixers // Chem. Eng. and Proc.: Proc. Intens. 2011. V. 50. № 10. P. 979. https://doi.org/10.1016/j.cep.2011.06.006.
  21. 21. Jasińska M. Test reactions to study efficiency of mixing // Chem. Process Eng. 2015. № 36 (2). Р. 171.
  22. 22. Guichardon P., Falk L. Characterisation of micromixing efficiency by the iodide–iodate reaction system. Part I: experimental procedure// Chem. Eng. Sci. 2000. V. 55. P. 4233. DOI: 10.1016/S0009-2509(00)00068-3
  23. 23. Abiev R. Sh., Sirotkin A.A. Influence of Hydrodynamic Conditions on Micromixing in Microreactors with Free Impinging Jets// Fluids. 2020. V. 5. Iss. 4. Р. 179 doi:10.3390/fluids5040179;
  24. 24. Abiev R. Sh., Nikolaev A.M., Kovalenko A.S., Gorshkova Yu.E, Tsvigun N.V., Baranchikov A.E., Kopitsa G.P., Shilova O.A. One step synthesis of FeOx magnetic nanoparticles in the microreactor with intensively swirling flows// Chem. Eng. Res. and Des. 2024. V. 205 P. 335. https://doi.org/10.1016/j.cherd.2024.03.031
  25. 25. Abiev R.S., Kudryashova A.K. Study of micromixing in a microreactor with countering intensively swirled flows. Theor. Found. Chem. Eng. 2024. 59 (2). [Абиев Р.Ш., Кудряшова А.К. Исследование микросмешения в микрореакторе с встречными интенсивно закрученными потоками// Теор. осн. хим. технол. 2024. Т. 59. № 2. С. 141].
  26. 26. Соколов В.Н., Доманский И.В. Газожидкостные реакторы. Л.: Машиностроение, 1976.
  27. 27. Barabash V.M., Abiev R.S., Kulov N.N. Theory and Practice of Mixing: A Review. Theor. Found. Chem. Eng. 2018. V. 52 № 4. Р. 473. https://doi.org/10.1134/S004057951804036X [Барабаш В.М., Абиев Р.Ш., Кулов Н.Н. Обзор работ по теории и практике перемешивания// Теор. основы хим. технол., 2018. Т. 52. № 4. С. 367. DOI: 10.1134/S0040357118040024]
  28. 28. Alopaeus V., Koskinen J., Keskinen K.I. Simulation of the Population Balances for Liquid-Liquid Systems in a Nonideal Stirred Tank, Part 1. Description and Qualitative Validation of the Model// Chem. Eng. Sci. 1999. № 54. Р. 5887.
  29. 29. Albadi Y., Abiev R.S., Sirotkin A.A., Martinson K.D., Chebanenko M.I., Nevedomskyi V.N., Buryanenko I.V., Semenov V.G., Popkov V.I. Physicochemical and hydrodynamic aspects of GdFeO3 production using a free impinging-jets methods// Chem. Eng. and Proc.- Proc. Intens. 2021. №166. Р. 108473. https://doi.org/10.1016/j.cep.2021.108473
  30. 30. Левеншпиль О. Инженерное оформление химических процессов М.: Химия, 1969. [Levenspiel O. Chemical Reaction Engineering, Third Edition. Wiley. 1999]
  31. 31. Виестур У.Э., Кузнецов А.М., Савенков В.В. Системы ферментации. Рига: Зинатне, 1986. [Viesturs U.E., Kuznetsov A.M., Savenkov V.V. Fermentation Systems, Riga: Zinatne Press, 1986.].
  32. 32. Александров И.А. Массопередача при ректификации и абсорбции многокомпонентных смесей. Л.: Химия, 1975 . [Aleksandrov I.A. Mass transfer at distillation and absorption of multicomponent mixtures. Leninigrad, Khimia. 1975. ].
  33. 33. Heyouni A., Roustan M., Do-Quang Z. Hydrodynamics and mass transfer in gas–liquid flow through static mixers // Chem. Eng. Sci. 2002. № 57. Р. 3325.
  34. 34. Abiev R.Sh., Galushko A.S. Hydrodynamics of pulsating flow type apparatus: simulation and experiments// Chem. Eng. J. 2013. V. 229. P. 285. DOI: 10.1016/j.cej.2013.05.105
  35. 35. Abiev R.Sh., Galushko A.S. Bubbles size and mass transfer in a pulsating flow type apparatus with gas-liquid mixture// Journal of Flow Chemistry. 2021. № 11. Р. 369. https://doi.org/10.1007/s41981-021-00177-y
  36. 36. Vasilev M.P., Abiev R.Sh. Intensification of Droplet Disintegration for Liquid–Liquid Systems in a Pulsating Flow Type Apparatus by Adding an Inert Gas // Fluids. 2023. № 8. Р. 38. https://doi.org/10.3390/fluids8020038.
  37. 37. Laakkonen M., Moilanen P., Alopaeus V., Aittamaa J. Modelling local bubble size distributions in agitated vessels // Chem. Eng. Sci. 2007. № 62. Р. 721. DOI: 10.1016/j.ces.2006.10.006m
  38. 38. Alves S.S., Maia C.I., Vasconcelos J.M.T., Serralheiro A.J. Bubble size in aerated stirred tanks// Chem. Eng. J. 2002. № 89. Р. 109.
QR
Translate

Индексирование

Scopus

Scopus

Scopus

Crossref

Scopus

Higher Attestation Commission

At the Ministry of Education and Science of the Russian Federation

Scopus

Scientific Electronic Library