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Рассматривается задача повышения точности моделей для оценки показателей низкотемпера-
турных свойств, показателей воспламеняемости и противоизносных свойств целевых продуктов 
колонны фракционирования в условиях малого объема данных аналитического контроля. Для 
решения рассматриваемой задачи предложен метод построения моделей, в составе которого ис-
пользуется алгоритм расширения малой обучающей выборки по данным фракционного состава, 
отличающийся способом отбора дополнительных данных, учитывающим показатель разреженно-
сти, что позволило включить в обучающую выборку недостающее количество данных, и в итоге обе-
спечить повышение качества модели. Использование предложенного метода позволило повысить 
точность моделей в среднем на 18% в сравнении с известными методами и в среднем на 6% в срав-
нении с методом на основе расширения обучающей выборки без учета показателя разреженности. 
Результаты представлены на примерах построения моделей показателей качества предельной тем-
пературы фильтруемости, температуры вспышки, кинематической вязкости при 40ºC и цетанового 
числа среднего дистиллята (фракции дизельного топлива) и температуры вспышки керосиновой 
фракции промышленной колонны фракционирования технологической установки гидрокрекинга.
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ВВЕДЕНИЕ
В современных системах управления хими-

ко-технологическими процессами широко при-
меняются математические модели для оценки 
показателей качества (ПК) получаемых продук-
тов [1]. Данные модели применяются в режиме 
реального времени для оценки и прогнозирова-
ния труднодоступных ПК, например, низкотем-
пературных свойств нефтепродуктов, основы-
ваясь на значениях легкодоступных параметров 
технологического процесса (ТП), таких как зна-
чения температурного профиля, давления, рас-
ходов потоков в технологическом аппарате. Раз-
работка и внедрение моделей для оценки ПК 
независимо от их типа требуют накопления ка-
чественных данных [2]. Следует отметить, что 
в реальных условиях некоторые ПК продуктов 
могут определяться сравнительно редко, что 
приводит к малому объему накопления данных 

аналитического контроля. Построение моделей 
в условиях малой выборки может часто приво-
дить к переобучению модели [3], невозможности 
использования достаточного количества вход-
ных переменных [4] и выявления зависимостей 
между переменными [5], что негативно сказыва-
ется на их точности. Поэтому при работе с малы-
ми обьемами данных необходимо адаптировать 
традиционные подходы для улучшения каче-
ства оценивания на тестовом сегменте данных 
[3]. Использование малого объема накопленных 
данных с меньшим возможным числом степе-
ней свободы модели также приводит к необхо-
димости построения более простой модели и 
ограничивает возможность извлечения зависи-
мостей из данных [6]. Понятие малой выборки 
связано с количеством полезной информации, 
которую можно извлечь из данных в решаемой 
задаче [7]. В случае построения моделей для оце-
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нивания показателей качества продуктов слож-
ной ректификационной колонны, учитывая по-
вторяемость технологических режимов объекта, 
авторами принято считать малой выборку, со-
держащую менее 100 наблюдений.

Известны работы, основной задачей кото-
рых для решения данной проблемы является 
разработка и модификация различных матема-
тических методов построения моделей [8]. Бо-
лее широкое распространение получил подход 
на основе добавления сгенерированного набора 
данных (VSG – Virtual Sample Generation) [8, 9] к 
малой обучающей выборке (ОВ). Однако дан-
ный подход может быть неэффективным, если 
связи в синтетических данных отличаются от 
связей в реальных [10]. Сгенерированный набор 
данных может быть получен от откалиброванной 
строгой (англ. rigorous) модели, учитывающей 
физико-химические закономерности   ТП [11]. 
Ввиду того, что использование строгих моделей 
не всегда возможно, в особенности для оценки 
низкотемпературных свойств, чаще применяют-
ся алгоритмы расширения ОВ, использующие 
методы машинного обучения. Так, в работе [5] 
генерирование наборов синтетических данных 
осуществляется с помощью смещения значений 
входных переменных путем добавления белого 
шума и последующим объединением нескольких 
выборок для увеличения итогового разнообра-
зия данных. В работах [8, 12] описано получение 
синтетических данных с помощью генератив-
но-состязательных нейронных сетей. В работе 
[10] предложен метод расширения ОВ с исполь-
зованием эволюционных алгоритмов для полу-
чения синтетических данных с сохранением не-
линейных зависимостей. Работа [13] посвящена 
обзору непараметрических методов построения 
моделей с использованием функций ядер, отме-
чено преимущество данной группы методов при 
работе с малыми объемами данных.

При расширении ОВ следует отметить акту-
альность задачи определения достаточного ко-
личества дополнительных данных [10, 14], так 
как добавление избыточного количества син-
тетических наблюдений в ОВ может привести к 
снижению точности модели. С понятием малой 
выборки также связан термин разреженность 
данных (англ. data sparsity), используемый для 
обозначения широких интервалов между наблю-
даемыми значениями в границах диапазона их 
изменения. Высокая разреженность данных так-
же негативно сказывается на точности моделей 
[15], поэтому разреженность используется для 
обозначения недостаточного количества наблю-
дений при построении статистической модели.

В настоящей работе рассматривается про-
мышленная колонна фракционирования уста-
новки гидрокрекинга, целевыми продуктами 
которой являются средний дистиллят и керо-
синовая фракция (КФ). В ходе аналитического 
контроля для указанных продуктов в среднем 
1–2 раза в сутки определяются показатели ис-
паряемости и значительно реже определяются 
показатели противоизносных свойств, воспла-
меняемости и показатели низкотемпературных 
свойств. Последние редкоизмеряемые показа-
тели качества (РПК) регламентируются так же, 
как и часто измеряемые показатели (ЧПК) ис-
паряемости, поэтому актуальной является зада-
ча повышения точности моделей для оценива-
ния РПК в условиях малого обьема накопления 
данных. Данная задача рассматривается для пре-
дельной температуры фильтруемости (ПТФ), 
температуры вспышки, вязкости при 40ºC, цета-
нового числа (ЦЧ) среднего дистиллята и темпе-
ратуры вспышки КФ.

В отличие от предыдущих работ, указанных 
выше, для получения синтетических данных в 
настоящей работе используется вспомогатель-
ная модель, в основе которой лежит зависимость 
между РПК и ЧПК. На основании исследований 
в [16–21], подтверждающих корреляции между 
РПК и ЧПК, выбраны следующие варианты со 
связями ПК: ПТФ среднего дистиллята и темпе-
ратурами конца кипения, температурой вспыш-
ки среднего дистиллята и началом кипения, 
вязкостью среднего дистиллята при 40ºC и тем-
пературами выкипания в диапазоне 20–70 об. %, 
ЦЧ и температурами выкипания в диапазоне 10, 
50 и 90 об. %  и между температурой вспышки 
керосина и его началом кипения. Стоит отме-
тить, что непосредственно применять данные 
корреляции невозможно ввиду необходимости 
использования всей кривой разгона или других 
РПК для расчета, а также необходимо учиты-
вать возможные различия в распределении угле-
водородов (парафины, изопарафины, нафтены 
и ароматические соединения) при одинаковом 
фракционном составе.

Ранее в работе [22] предложен метод, в соста-
ве которого используется алгоритм расширения 
ОВ на основе вспомогательной модели оценива-
емого ПК целевого продукта с учетом показателя 
разреженности. Значение показателя разрежен-
ности использовано для заполнения как можно 
большего числа пустых интервалов имеющейся 
ОВ в диапазоне изменения выходной перемен-
ной. В настоящей работе предлагается метод рас-
ширения ОВ, отличающийся от [22] заполнени-
ем интересующего диапазона синтетическими 
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данными (со вспомогательной модели) с учетом 
значения показателя разреженности с последую-
щим отбором выборки по результатам тестиро-
вания на начальной известной ОВ. Полученный 
набор отобранных синтетических наблюдений 
далее предлагается добавлять к изначальной ОВ. 
Также приводится сравнение методов построе-
ния вспомогательной модели для получения син-
тетических данных с использованием робастной 
регрессии (РР), нейронных сетей прямого рас-
пространения (НСПР) и метода ортогональных 
проекций на скрытые структуры на основе ядра 
(англ. K-OPLS). При сравнении эффективно-
сти данных методов предлагается осуществлять 
проверку качества получаемых синтетических 
наблюдений путем использования их в качестве 
ОВ модели с последующим тестированием ее на 
начальной известной  ОВ. Также результаты рас-
ширения ОВ с использованием предлагаемого 
метода приведены для пяти РПК.

ОПИСАНИЕ ТЕХНОЛОГИЧЕСКОГО 
ОБЪЕКТА И ПОСТАНОВКА ЗАДАЧИ

Описание технологического объекта. Объек-
том исследования является сложная колонна 
фракционирования (рис. 1), в которой про-
исходит разделение подаваемого сырья (ста-
бильного гидрогенизата гидрокрекинга) на 
тяжелую нафту, КФ, средний дистиллят, тя-
желую дизельную фракцию и остаток гидро-
крекинга.

Средний дистиллят в зависимости от режима 
работы установки может использоваться в ка-
честве компонента масляной основы буровых 
растворов (МОБР), компонента зимнего или 
арктического дизельных топлив (ДТЗ и ДТА со-
ответственно) путем смешения с КФ. В зависи-
мости от целевого назначения среднего дистил-
лята диапазон изменения его ЧПК отличается, 
при этом некоторые РПК могут не определять-
ся в ходе аналитического контроля.
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Рис. 1. Схема ТП фракционирования. К-1 – колонна фракционирования, К-2 – колонна отпаривания КФ, К-3 – колонна 
отпаривания среднего дистиллята, К-4 – колонна отпаривания тяжелого дизельного топлива, КФ – керосиновая фракция, 
СД – средний дистиллят, ДФ – дизельная фракция, ТДФ – тяжелая дизельная фракция, ВЦО – верхнее циркуляционное 
орошение, НЦО – нижнее циркуляционное орошение.
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Таблица 3. Входные переменные модели для оценки температуры вспышки в закрытом тигле среднего дистил-
лята

№ Обозначение Описание Ед. изм.
1 TIC1 Температура паров колонны К-2 ºC
2 TIC2 Температура паров колонны К-3 ºC
3 TIC7 Температура среднего дистиллята из колонны К-3 ºC
4 FIC4 Расход среднего дистиллята м3/ч

Таблица 4. Входные переменные модели для оценки вязкости среднего дистиллята при 40ºC

№ Обозначение Описание Ед. изм.
1 TIC11 Температура ВЦО ºC
2 FIC1 Расход орошения колонны К-1 нафтой м3/ч
3 FIC2 Расход орошения колонны К-1 средним дистиллятом м3/ч
4 FIC4 Расход среднего дистиллята м3/ч
5 PI1 Давление в нижней секции колонны К-1 МПа

Таблица 5. Входные переменные модели для оценки ЦЧ среднего дистиллята

№ Обозначение Описание Ед. изм.
1 TIC1 Температура паров колонны К-2 ºC
2 TIC4 Температура бокового потока среднего дистиллята ºC
3 TIC8 Температура циркулирующего потока куба колонны К-1 ºC
4 FIC2 Расход орошения колонны К-1 средним дистиллятом м3/ч

Таблица 6. Входные переменные модели для оценки температуры вспышки в закрытом тигле КФ

№ Обозначение Описание Ед. изм.
1 TIC1 Температура паров колонны К-2 ºC
2 TI3 Температура бокового потока КФ ºC
3 TIC6 Температура КФ с куба колонны К-2 ºC
4 TIC9 Температура ТДФ с куба колонны К-4 ºC
5 FIC1 Расход орошения колонны К-1 нафтой м3/ч
6 FIC3 Расход КФ с куба колонны К-2 м3/ч

Таблица 1. Количество наблюдений в ОВИСД и ТВИСД для исследуемых РПК

ПК Кол-во наблюдений в ОВИСД, шт. Кол-во наблюдений в ТВИСД, шт.

ПТФ среднего дистиллята 34 33
Твсп среднего дистиллята 46 45
Вязкость при 40ºC среднего дистиллята 41 40
ЦЧ среднего дистиллята 105 105

Твсп КФ 78 78

Таблица 2. Входные переменные модели для оценки ПТФ среднего дистиллята

№ Обозначение Описание	 Ед. изм.
1 TIC4 Температура среднего дистиллята из колонны К-1 ºC
2 TIC5 Температура куба колонны К-2 ºC
3 TIC10 Температура ВЦО ºC
4 FIC1 Расход орошения колонны К-1 нафтой м3/ч
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Известный сегмент данных (ИСД). Рассма-
триваются оценки ПК для потоков средне-
го дистиллята и  КФ. Доступные для анализа 
наблюдения по каждому РПК среднего дис-
тиллята и КФ делятся последовательно на ОВ 
и тестовую выборку (ТВ). Деление осущест-
вляется в равном соотношении по указан-
ному времени и дате лабораторного анализа 
(ранний период – ОВИСД, поздний период  – 
ТВИСД). Размеры полученных соответствую-
щих обучающих и тестовых выборок пред-
ставлены в табл. 1.

На рис. 2 представлены гистограммы распре-
деления данных ОВ на целевом диапазоне для 
всех рассматриваемых РПК. Показаны пропу-
ски в данных, заполнение которых позволит 
повысить точность оценок за счет учета зависи-
мостей во всем интересующем диапазоне изме-
нения выходной переменной.

В табл. 2–6 представлены входные перемен-
ные моделей для оценки ПТФ, температуры 
вспышки, вязкости при 40ºC, ЦЧ среднего ди-
стиллята и температуры вспышки КФ соответ-
ственно.
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Рис. 2. Гистограммы распределения данных в ОВ: (а) ПТФ среднего дистиллята; (б) Твсп среднего дистиллята; (в) вязкость при 
40ºC среднего дистиллята; (г) ЦЧ среднего дистиллята; (д) Твсп керосиновой фракции.
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Постановка задачи. Задача заключается в раз-
работке моделей для оценки ПТФ, температу-
ры вспышки, вязкости при 40ºC и  ЦЧ среднего 
дистиллята и температуры вспышки КФ с более 
высокой точностью в условиях малой ОВ в срав-
нении с моделями, построенными с использова-
нием ИСД.

ИСПОЛЬЗУЕМЫЕ МЕТОДЫ ПОСТРОЕНИЯ 
МОДЕЛЕЙ ДЛЯ ПОЛУЧЕНИЯ ОЦЕНОЧНЫХ 

ЗНАЧЕНИЙ РПК 

Для построения моделей распространены 
следующие методы [23–25]: РР; НСПР; метод 
ортогональных проекций на скрытые структуры 
на основе ядра, также используемые в хемоме-
трике. Точность моделей в условиях малой ОВ, 
построенных с использованием данных мето-
дов, как правило, не удовлетворяет требованиям 
в промышленных условиях и нуждается в адап-
тации и развитии подходов к моделированию. 
Поэтому в данной работе производится расши-
рение ОВ с целью повышения точности моделей.

Робастная регрессия. Построение линейных 
регрессионных моделей широко распростра-
нено ввиду простоты их реализации и невысо-
ких требований к вычислительным мощностям. 
Уравнение множественной линейной регрессии 
имеет вид:
	 yi j i j

j

m

b b x= +
=

∑0
1

, .	 (1)

Свободный коэффициент b0 и коэффициен-
ты при переменных bj могут быть оценены тех-
нологом на предмет их согласованности по знаку 
с физико-химическими принципами и скоррек-
тированы при построении модели, а также при 
построении линейной регрессионной модели 
просто интерпретировать полученный результат.

Также используется РР [23], вектор коэффи-
циентов РР bRR определяется в результате реше-
ния следующей системы уравнений:
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где m – количество входных переменных. Эле-
менты выборки должны быть нормализованы на 
нулевое среднее и единичную дисперсию перед 

использованием в (2). Значения весовых коэф-
фициентов ωi  итерационно определяются в со-
ответствии с весовой функцией, начиная со всех 
ωi =1 . Здесь используется весовая функция Фай-
ера (англ. Fair) [26]:
	 ωi ir= +( )1 1 .	 (3)

Вектор r значений для расчета весовых коэф-
фициентов зависит от медианного значения мо-
дулей отклонений ошибок на предыдущем шаге 
итерации и определяется по формуле:
	

r

y b x

cA h
i

i RR j i j
j

m

i

=

−

−
=

∑ , ,

,1

1

	  
(4)

	

A =
−( ) − −( )( )med medy y y y 

0 6745.
.

	  
(5)

Нейронная сеть прямого распространения. 
Нейронные сети получили широкое распро-
странение в машинном обучении и хемометри-
ке благодаря своей универсальности. Основны-
ми преимуществами нейронных сетей являются 
возможность работы с большими объемами дан-
ных, выявление глубоких зависимостей, что 
не всегда доступно при использовании других 
методов, и преобразование исходного сложно
устроенного объекта в набор признаков. В дан-
ной работе используется однослойная НСПР. 
Оцениваемое значение выходной переменной 
вычисляется в соответствии с уравнением:
	 y W W pi i
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В основе однослойной  НСПР лежит теорема, 
доказанная Дж. Цыбенко в 1989 г. [24]. Основное 
утверждение теоремы – искусственная НСПР с 
одним скрытым слоем может аппроксимировать 
любую непрерывную функцию множества пере-
менных с заданной точностью. Согласно работе 
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Цыбенко: пусть φ – любая непрерывная сигмо-
идная функция. Если дана любая непрерывная 
функция действительных переменных f(x), опре-
деленная на пространстве [0,1]n, то существуют 
векторы параметров wi, αi, θi и такая функция
	

Q i i i i i
j

k

x w x p( ) = +( )
=

∑ w( ) ( ) ,2 1

1

ϕ
	

(12)

что для всех X
N∈[ ]0 1,  выполняется условие

	 Q fi i ix x( ) − ( ) < ε . 	   (13)

K-OPLS. OPLS – метод множественной ли-
нейной регрессии путем построения ортого-
нальных проекций на скрытые структуры. В ходе 
построения модели матрица входных данных Х 
представляется в виде двух наборов скрытых пе-
ременных Tp и To:
	 X T P T P Ep p

T
o o

T= + + . 	 (14)

Здесь Tp – y-прогнозная матрица вкладов 
(англ. score matrix), Pp

T  – y-прогнозная матрица 
нагрузки (англ. loading matrix), To – соответству-
ющая y-ортогональная матрица вкладов, Po

T  – 
соответствующая y-ортогональная матрица на-
грузки, E – матрица остатков. Обе матрицы, 
y-прогнозная и y-ортогональная, описывают 
свойства смоделированных наблюдений, с по-
мощью которых возможно выявление очевид-
ных и неожиданных трендов, кластеров или вы-
бросов в данных [25].

Kernel-OPLS – модифицированный метод 
OPLS, в котором добавлено преобразование ма-
трицы X на основе функции ядра, позволяющее 
рассматривать матрицу ядра как скалярные про-
изведения в пространстве признаков высокой 
размерности. Произведение XXT заменяется на 
матрицу Грама K, где K x xi j i j, ker ,= ( ) , что позво-
ляет избежать отображения X в пространстве бо-
лее высокой размерности. В качестве функции 
ядра ker( , )⋅ ⋅  в данной работе использована 
функция Гаусса:
	 ker( , ) exp( ),x y x y= − − 2 22σ 	 (15)

где σ – параметр настройки, нахождение опти-
мального значения которого позволяет снизить 
ошибку при обучении и тестировании модели. 
Среди преимуществ K-OPLS выделяют устойчи-
вость к выбросам и мультиколлинеарности вход-
ных переменных. Подробное описание метода 
приведено в [27].

Критерии оценки результатов. В качестве кри-
териев для оценки полученных результатов ис-
пользованы: средняя абсолютная ошибка (САО) 
и коэффициент детерминации R2, которые вы-

числяются по формулам, приведенным ниже:
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ПРЕДЛАГАЕМЫЙ МЕТОД ПОСТРОЕНИЯ 
МОДЕЛЕЙ ДЛЯ ОЦЕНКИ ПК

Структура метода. Структура предлагаемо-
го метода построения моделей для оценки РПК 
представлена на рис. 3. Сущность метода заклю-
чается в расширении ОВ за счет использования 
оценок от вспомогательной модели, построен-
ной на основании наблюдений ЧПК, например, 
фракционного состава, за период, соответству-
ющий обучающей выборке известного сегмента 
данных.

Расширение ОВ происходит путем добавле-
ния к ОВИСД синтетических наблюдений, по-
лученных от вспомогательной модели. Полу-
ченные синтетические наблюдения могут быть 
добавлены к ОВИСД полностью (добавление всех 
синтетических данных (ВСД)) или частично 
(добавление дополнительного сегмента данных 
(ДСД) после отбора из ВСД). 

В условиях малого накопления данных анали-
тического контроля используется вспомогатель-
ная модель для получения оценок РПК при по-
мощи ЧПК: Y G Y

РПК ЧПК= ( ). Наблюдения ЧПК и 
РПК содержат в себе данные аналитического 
контроля (YЧПК и YРПК), наблюдения входных пе-
ременных (XЧПК и XРПК) в соответствующие мо-
менты времени. 

Таким образом, наблюдения расширенной 
ОВ (РОВ) будут содержать наблюдения аналити-
ческого контроля РПК YРПК  и выход вспомога-
тельной модели 

?
YРПК , а также соответствующие 

наблюдения входных переменных XРПК и XЧПК. 
Последние, XЧПК, соответствуют по времени син-
тетическим данным YРПК, включаемым в ДСД:
	 Y Y Y X X XРОВ РПК ДСД РОВ РПК ДСД=   =  ; , ; .

Показатель разреженности. Для получения 
ДСД предлагается алгоритм отбора синтетиче-
ских наблюдений с учетом показателя разре-
женности данных S [22]. Основная задача при-
менения данного алгоритма – формализация и 
упрощение процесса отбора наблюдений, а так-
же предотвращение включения в ОВ  избыточ-
ного количества наблюдений. Также показатель 
разреженности служит индикатором достаточ-
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ности количества наблюдений выходной пере-
менной в ОВ при построении модели. 

Использование показателя разреженности 
S предполагает деление диапазона известных 
значений выходной переменной на n равных 
по длине интервалов и индикацию наличия хо-
тя бы одного наблюдения в данном интервале. 
Показатель разреженности рассчитывается по 
формуле:
	 S

n
ai

i

n

= −
=
∑1

1

1

, 	  (18)

где a
H

Hi
i

i
=

≥
<





1 1

0 1

, dim

, dim
 – индикатор того, что в i-м 

интервале есть хотя бы одно наблюдение; n – за-
данное количество интервалов; Hi – вектор, со-
держащий наблюдения выходной переменной, 
попадающих в i-й интервал:
	 H x L i L ii l l: ,= ∈ + ⋅ −( ) + ⋅( ∆ ∆1 , i n=1,..., , 	(19)

где Δ – длина рассматриваемого интервала, ко-
торая вычисляется как:
	 ∆ = −( )L L nh l , 	 (20)

где Lh и Ll – верхняя и нижняя границы диапа-

зона изменения выходной переменной соответ-
ственно.

Значения Lh и Ll можно задавать в соответ-
ствии с требованиями к ПК выходного продукта 
или в соответствии с интересующим сегментом 
выборки. Значения Lh и Ll выбираются в соот-
ветствии с максимальным и минимальным зна-
чениями YРПК в ОВИСД.

Показатель разреженности изменяется в ин-
тервале: S ∈[ )0 1, , и его значение зависит от вы-
бранного количества интервалов n. Определение 
задаваемого числа интервалов n осуществляется 
исходя из точности измерения ПК в ходе анали-
тического контроля. 

Стоит отметить, что при проведении аналити-
ческого контроля ПК результат округляется до 
q-го разряда, который определяется в зависимо-
сти от метода проведения лабораторного анализа. 
Размерность значений (количество знаков после 
запятой) в синтетических данных определяется 
используемым программно-вычислительным 
комплексом и математическим методом построе-
ния вспомогательной модели и является доста-
точно большой величиной, избыточной для алго-
ритма расширения ОВ. Предлагается округление 

Данные аналитического контроля

ЧПК РПК

� �
ЧПК РПК

= ?

Блок формирования ДСД

Разработка
основной модели

Выход
основной модели

Разработка
вспомогательной

модели

Отбор
наблюдений из
ВСД с учетом S

Нет Да

ВСД
Y ( )

РПК ЧПК
= G X

Данные ТП Y ( )
РПК

= Данные ТПF

ДСД

Рис. 3. Структура предлагаемого метода построения модели для оценки ПК в условиях малой выборки.
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значений синтетических наблюдений до q+1 раз-
ряда, что предотвращает включение всех синтети-
ческих наблюдений в ОВ при использовании 
n → +∞ . В имеющихся данных по РПК темпера-
турные значения ПТФ и Tвсп среднего дистиллята, 
а также Твсп керосиновой фракции представлены с 
точностью до целых ºC, предлагается округление 
значений выхода в синтетических данных до деся-
тых долей ºC.  ЦЧ среднего дистиллята определя-
ется с точностью до десятых долей, в синтетиче-
ских наблюдениях округляется до сотых долей. 
Вязкость в ходе аналитического контроля опреде-
ляется с точностью до тысячных долей, в этом 
случае предлагается округление значений синте-
тических наблюдений до тысячных долей с целью 
уменьшения количества интервалов n, учитывая 
диапазон изменения выходной переменной в 
ОВИСД.

Ниже представлен алгоритм построения моде-
лей для оценки  ПК продуктов колонны фракци-
онирования на основе расширенной обучающей 
выборки с учетом показателя разреженности.

Алгоритм отбора наблюдений из ВСД с учетом показателя 
разреженности S

На входе: YРПК , XРПК  YРПК, X ЧПК ,  ε0  

На выходе: YДСД , X ДСД

1
Формирование начальных значений 
Y YвДСД РПК=  ( )1  и X XвДСД ЧПК= ( )1

2 Вычисление SвДСД|1  для YвДСД

3 Инициализация счетчика i = 2  и q =1

4 Делать пока i Y≤ dim 

РПК :

5 Расчет S iвДСД|  для [ ; ( )]Y Y iвДСД РПК


6 Если S Si iвДСД вДСД| |< −1 , то:

7 Y Y Y iвДСД вДСД РПК= [ ; ( )]

8 X X X iвДСД вДСД ЧПК= [ ; ( )]

9 Если dimYвДСД ≥10 , то:

10 Построение модели Y F XвДСД вДСД= ( ) 

11 Если Y F X qРПК РПК− < −( ) ε 1, то:

12 Y YДСД вДСД=

13 X XДСД вДСД=  

14 ε j Y F X= −РПК РПК( )

15 q q:= +1

16 i i:= +1

17 Возвращение YДСД  и X ДСД

Формирование временного дополнительного 
сегмента данных (вДСД) осуществляется в два 
этапа: сначала добавляется одно наблюдение 
синтетических данных с более поздним време-
нем τ τсинт ТВ→  для расчета начального значения 
SвДСД, после чего добавление последующих на-
блюдений осуществляется по убыванию време-
ни, и при условии уменьшения SвДСД. Начиная с 
10 включенных в вДСД наблюдений производит-
ся обучение модели на этой выборке и тестиро-
вание на ОВИСД. Тестирование на ОВИСД предпо-
лагает выбор модели с наибольшей точностью. 
Полученный дополнительный сегмент данных 
содержит не более одного наблюдения в каждом 
из n интервалов и имеет наиболее высокую со-
гласованность данных с ОВИСД по средней абсо-
лютной ошибке при тестировании. Для сравне-
ния эффективности предлагаемого алгоритма 
расширения ОВ с учетом разреженности исполь-
зуются следующие варианты ОВ: включение в 
ОВ только наблюдений из ИСД; к ИСД добавля-
ются ВСД; к ИСД добавляется ДСД, то есть толь-
ко отобранные с учетом S более поздние синте-
тические наблюдения.

Использование показателя разреженности в 
алгоритме расширения ОВ необходимо для за-
полнения как можно большего числа интервалов 
в диапазоне изменения выходной переменной 
YРПК. Основной целью заполнения интервалов 
в ходе отбора синтетических данных является 
добавление в ОВ для основной модели данных 
режимов функционирования технологическо-
го объекта, для которых отсутствуют измерения 
YРПК. Также учет показателя разреженности огра-
ничивает включение в ОВ синтетических данных 
с дублирующимися значениями выхода, т. е. ис-
ключается дополнение данными близких техно-
логических режимов.

РЕЗУЛЬТАТЫ И ИХ ОБСУЖДЕНИЕ
Корреляционный анализ. В табл. 7–11 пред-

ставлены корреляционные матрицы, показыва-
ющие линейную корреляцию между РПК и точ-
ками фракционного состава (ФС).

Стоит отметить, что результаты, представлен-
ные в табл. 7–11, не противоречат известным 
корреляциям [16–21] между РПК и точками ФС 
соответствующих продуктов колонны фракци-
онирования. Поэтому в качестве входных пере-
менных для вспомогательной модели при полу-
чении синтетических оценок использованы: для 
получения оценок ПТФ среднего дистиллята – 
50, 90 и 95%-ные температуры выкипания; для 
Твсп среднего дистиллята использована ТНК; для 
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вязкости среднего дистиллята при 40°C – 50 и 
90%-ные температуры выкипания; для  ЦЧ сред-
него дистиллята – 10, 50, 90 и 95%-ные темпе-
ратуры выкипания ввиду сравнительно низких 
значений коэффициентов корреляции; для Твсп 
керосиновой фракции – ТНК и температура вы-
кипания 10 об. % .

Вспомогательная модель. Построение вспомо-
гательных моделей осуществляется тремя приве-
денными выше методами, используя ОВИСД. Для 
обучения нейронных сетей использована НСПР, 
содержащая один скрытый слой, состоящий из 
одного нейрона, функция активации – гипербо-
лический тангенс, и в качестве метода обучения 

Таблица 7. Коэффициенты корреляции между ПТФ среднего дистиллята и точками ФС

ПТФ ТНК ФС10 ФС50 ФС90 ФС95
ПТФ 1 -0.0869 0.1723 0.6933 0.8064 0.7910
ТНК -0.0869 1 0.7724 -0.0171 -0.1667 -0.2152
ФС10 0.1723 0.7724 1 0.3669 0.2514 0.2021
ФС50 0.6933 -0.0171 0.3669 1 0.8828 0.8673
ФС90 0.8064 -0.1667 0.2514 0.8828 1 0.9875
ФС95 0.7910 -0.2152 0.2021 0.8673 0.9875 1

Таблица 8. Коэффициенты корреляции между Tвсп среднего дистиллята и точками ФС

ПТФ ТНК ФС10 ФС50 ФС90 ФС95
ПТФ 1 0.9138 0.7610 0.4063 0.3344 0.3451
ТНК 0.9138 1 0.7275 0.2901 0.2124 0.2141
ФС10 0.7610 0.7275 1 0.7926 0.7405 0.7303
ФС50 0.4063 0.2901 0.7926 1 0.9783 0.9734
ФС90 0.3344 0.2124 0.7405 0.9783 1 0.9969
ФС95 0.3451 0.2141 0.7303 0.9734 0.9969 1

Таблица 9. Коэффициенты корреляции между вязкостью среднего дистиллята при 40°C и точками ФС

ПТФ ТНК ФС10 ФС50 ФС90 ФС95
ПТФ 1 0.1500 0.3389 0.7004 0.5581 0.5058
ТНК 0.1500 1 0.8871 -0.2151 -0.4756 -0.4354
ФС10 0.3389 0.8871 1 -0.0096 -0.3611 -0.3534
ФС50 0.7004 -0.2151 -0.0096 1 0.7915 0.7421
ФС90 0.5581 -0.4756 -0.3611 0.7915 1 0.9703
ФС95 0.5058 -0.4354 -0.3534 0.7421 0.9703 1

Таблица 10. Коэффициенты корреляции между   ЦЧ среднего дистиллята и точками ФС

ПТФ ТНК ФС10 ФС50 ФС90 ФС95
ПТФ 1 -0.1124 0.3894 0.5791 0.5435 0.5066
ТНК -0.1124 1 0.3576 -0.1498 -0.2631 -0.2440
ФС10 0.3894 0.3576 1 0.6613 0.2837 0.2300
ФС50 0.5791 -0.1498 0.6613 1 0.6929 0.6339
ФС90 0.5435 -0.2631 0.2837 0.6929 1 0.9908
ФС95 0.5066 -0.2440 0.2300 0.6339 0.9908 1

Таблица 11. Коэффициенты корреляции между Tвсп керосиновой фракции и точками ФС

ПТФ ТНК ФС10 ФС50 ФС90 ФС98
ПТФ 1 0.7132 0.7482 0.5307 0.2631 0.2303
ТНК 0.7132 1 0.7717 0.3537 0.0173 0.0300
ФС10 0.7482 0.7717 1 0.8111 0.4939 0.4992
ФС50 0.5307 0.3537 0.8111 1 0.8519 0.7988
ФС90 0.2631 0.0173 0.4939 0.8519 1 0.8363
ФС98 0.2303 0.0300 0.4992 0.7988 0.8363 1
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использован метод байесовской регуляризации 
[28]. Для получения синтетических оценок с по-
мощью модели K-OPLS значение параметра σ 
подбиралось итерационно, критерий оптималь-
ности – САО. Размеры выборок синтетических 
наблюдений по соответствующим РПК приведе-
ны в табл. 12.

В табл. 13 приведены рассчитанные критерии 
точности для построенных вспомогательных мо-
делей.

Из полученных в табл. 13 результатов видно, 
что наименьшая ошибка при обучении на ОВИСД 
для ПТФ среднего дистиллята достигается при 
использовании K-OPLS; для Твсп среднего дис-
тиллята – при использовании НСПР; для вязко-
сти среднего дистиллята при 40°C – при исполь-
зовании РР; для ЦЧ  среднего дистиллята – при 
использовании K-OPLS; для Твсп КФ – при ис-
пользовании НСПР. Отличия значений САО и 
R2 при сравнении методов в данном случае не-
значительны.

Для формирования ВСД используются ото-
бранные наблюдения точек ФС, соответствую-
щие условию τ τФС РПК≠  и τ τФС ТВ< . Вычисле-
ние ошибок оценок моделей относительно 
значений лабораторных наблюдений в данном 
случае невозможно. 

Проверка вспомогательных моделей. Для про-
верки качества вспомогательных моделей (на-
сколько хорошо синтетические данные отража-
ют зависимости ИСД) произведено построение 
моделей на основе полученных синтетических 
наблюдений и проведено тестирование их на 
ОВИСД, использованной при построения вспо-
могательных моделей. Построение моделей про-
верки также осуществляется тремя указанными 
математическими методами. Рассчитанные кри-
терии точности при обучении на синтетических 
данных и тестировании на ОВИСД для исследуе-
мых РПК представлены в табл. 14–18. 

Согласно результатам, приведенным в табл. 
14–18, при различных методах построения мо-
дели проверки меньшая САО достигается при 

использовании в качестве обучающей выбор-
ки ВСД, полученного с помощью НСПР, срав-
нение осуществляется по столбцам. При срав-
нении по строкам полученных результатов для 
большинства ПК также меньшая САО достига-
ется при использовании НСПР, поэтому этот 
метод используется далее для построения основ-
ных моделей. При этом меньшая ошибка также 
достигается при использовании пары вспомо-
гательная модель – основная модель варианта 
НСПР – НСПР. Данный эффект объясняется 
тем, что наборы ВСД, полученные с помощью 
разных моделей, в основном отличаются грани-
цами диапазона изменения значений выходной 
переменной и распределением наблюдений вну-
три этого диапазона.

Построение основных моделей. Для сравнения 
эффективности использования критерия разре-
женности S при отборе синтетических наблюде-
ний для обучения основных моделей использо-
ваны следующие варианты формирования ОВ:

– ОВ1 = [ОВИСД];
– ОВ2 = [ОВИСД; ВСД];
– ОВ3 = [ОВИСД; ДСД].
В табл. 19 представлены выбранные параме-

тры для расчета значения критерия разреженно-
сти S при работе алгоритма расширения ОВ для 
рассматриваемых РПК.

На рис. 4 представлены графики зависимо-
стей САО при тестировании полученных моде-

Таблица 12. Размеры выборок синтетических наблюде-
ний для РПК

ПК Кол-во синтетических 
наблюдений, шт.

ПТФ среднего дистиллята 617
Твсп среднего дистиллята 630
Вязкость при 40ºC среднего 
дистиллята 786

ЦЧ среднего дистиллята 512

Твсп КФ 325

Таблица 13. Критерии точности при обучении вспомогательных моделей

Вспомогательная модель
РР НСПР K-OPLS

РПК R2 САО R2 САО R2 САО
ПТФ среднего дистиллята 0.6531 2.8191 0.6453 2.9142 0.6558 2.7858
Твсп среднего дистиллята 0.8351 2.8432 0.8400 2.8166 0.8390 2.8361
Вязкость среднего дистиллята при 40  0.9084 0.0790 0.8998 0.0860 0.8959 0.0950
ЦЧ среднего дистиллята 0.2589 0.7515 0.2744 0.7411 0.3171 0.7343

Твсп КФ 0.6054 1.4897 0.6406 1.4198 0.5842 1.5464
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Таблица 14. Критерии точности моделей проверки для ПТФ среднего дистиллята

Модель проверки
РР НСПР K-OPLS

Вспомогательная модель R2 САО R2 САО R2 САО
МНК -0.1025 4.7660 -0.1033 4.7480 -0.0378 4.6889
НСПР 0.0690 4.4640 0.1751 4.1814 0.0925 4.5961
K-OPLS 0.0481 4.5614 0.1893 4.1501 0.0284 4.7498

Таблица 15. Критерии точности моделей проверки для Твсп среднего дистиллята

Модель проверки
РР НСПР K-OPLS

Вспомогательная модель R2 САО R2 САО R2 САО
МНК 0.5010 5.9617 0.5707 4.3964 0.3932 5.4185
НСПР 0.5620 5.5148 0.5982 4.0565 0.4809 5.3253
K-OPLS 0.5349 5.7632 0.5862 4.2618 0.4555 5.3138

Таблица 16. Критерии точности моделей проверки для вязкости среднего дистиллята при 40°C

Модель проверки
РР НСПР K-OPLS

Вспомогательная модель R2 САО R2 САО R2 САО
МНК -0.5954 0.4550 -0.3041 0.3816 -0.3843 0.4113
НСПР -0.7258 0.4776 -0.3048 0.3761 -0.3735 0.4091
K-OPLS -0.8388 0.4957 -0.3590 0.3795 -0.3763 0.4079

Таблица 17. Критерии точности моделей проверки для ЦЧ  среднего дистиллята

Модель проверки
РР НСПР K-OPLS

Вспомогательная модель R2 САО R2 САО R2 САО
МНК -0.1993 0.8552 -0.2508 0.8518 -0.2639 0.9085
НСПР -0.1717 0.8566 -0.1280 0.8553 -0.1808 0.8804
K-OPLS -0.1149 0.9104 -0.3661 1.0235 -1.1802 1.1356

Таблица 18. Критерии точности моделей проверки для ЦЧ КФ

Модель проверки
РР НСПР K-OPLS

Вспомогательная модель R2 САО R2 САО R2 САО
МНК 0.5912 1.6966 0.5817 1.7277 0.4810 1.8380
НСПР 0.5934 1.6099 0.5935 1.7069 0.4719 1.8270
K-OPLS 0.5618 1.8109 0.5625 1.7240 0.4794 1.8481

Таблица 19. Параметры для расчета значения критерия разреженности S

ПК Ll Lh n Δ

ПТФ среднего дистиллята –42 –22 100 0.2
Твсп среднего дистиллята 29 91 310 0.2
Вязкость при 40ºC среднего дистиллята 2.4 3.1 700 0.001
ЦЧ среднего дистиллята 43.4 51.7 415 0.02

Твсп КФ 28 55 135 0.2
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лей на ОВИСД от разреженности S обучающей вы-
борки для рассматриваемых РПК. 

В качестве ДСД выбирается набор наблюде-
ний, для которого результаты тестирования мо-
дели на ОВИСД соответствуют минимуму глобаль-
ного тренда зависимости САО от значения 
показателя разреженности. Это объясняется не-
обходимостью заполнения как можно большего 
числа интервалов более поздними наблюдения-
ми, время которых τ τсинт ТВ→ , без учета резкого 
изменения САО при тестировании на ОВИСД, что 
характерно при малом числе наблюдений в ОВ. 
Здесь мы не рассматриваем вопрос отбора на-

блюдений, добавление которых в ОВ, помимо 
снижения значения показателя разреженности 
S, также снижает САО при тестировании на 
ОВИСД. В этом случае добавление наблюдений 
при выполнении двух условий приводит к пере-
обучению модели, а также не позволяет вклю-
чить достаточное количество наблюдений в ОВ 
ввиду скачкообразного и резкого снижения САО 
при малом количестве наблюдений в ОВ.

В табл. 20 представлены рассчитанные кри-
терии точности на тестовой выборке разрабо-
танных моделей для вариантов: без расширения 
ОВ (ОВ1), расширение путем добавления всех 
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Рис. 4. Графики зависимостей САО при тестировании на ОВИСД от значения показателя разреженности обучающей выборки 
S: (а) ПТФ среднего дистиллята; (б) Твсп среднего дистиллята; (в) вязкость при 40ºC среднего дистиллята; (г) ЦЧ среднего 
дистиллята; (д) Твсп керосиновой фракции.
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синтетических наблюдений (ОВ2) и расширение 
путем добавления к ОВ синтетических наблюде-
ний, отобранных с учетом показателя разрежен-
ности S (ОВ3).

Для варианта ОВ2 – при добавлении всех син-
тетических наблюдений снижение САО достига-
ется в большей степени за счет увеличения ко-
личества наблюдений в ОВ. Повышение ошибки 
в данном случае объясняется “качеством” по-
лученных синтетических наблюдений ввиду то-
го, что синтетические наблюдения получаются 
при использовании преимущественно точек ФС 
продуктов из других режимов работы колонны 
фракционирования. В случае для ПТФ средне-
го дистиллята границы изменения значений вы-
ходной переменной значительно отличаются в 
зависимости от целевого продукта. Поэтому до-
бавление ВСД приводит к снижению точности 
получаемых моделей (табл. 20).

Отбор синтетических наблюдений с учетом 
показателя разреженности S позволяет выделить 
из ВСД сегмент данных, наиболее согласован-
ный с известным ОВИСД. Добавление ДСД к из-
вестным наблюдениям также может привести к 
снижению точности получаемой модели в срав-
нении с добавлением ВСД, как, например, при 
оценке ЦЧ среднего дистиллята (табл. 20). Дан-
ный эффект объясняется хорошей согласован-
ностью получаемых синтетических наблюдений 
и ОВИСД. Стоит отметить, что погрешность при 
измерении на “моторе” ЦЧ  составляет ∆ЦЧ = ±2  
[29], поэтому для ЦЧ  качество получаемых мо-
делей ограничено погрешностью способа его 
определения в ходе аналитического контроля.  

При этом и в случае добавления ВСД, и при до-
бавлении ДСД удается получить достаточно низ-
кое значение САО модели, близкое к 1. Преиму-
щество отбора синтетических наблюдений с 
учетом показателя разреженности S в данном 
случае заключается в возможности выделения 
наиболее согласованного с ОВИСД дополнитель-
ного сегмента данных, состоящего из 25 наблю-
дений, добавление которого также значительно 
повышает точность модели в сравнении с вари-
антом использования ОВИСД.

Использование предлагаемого в данной ра-
боте метода направлено на повышение точности 
при оценке ПК продуктов колонны фракцио-
нирования за счет расширения ОВ включением 
отобранных синтетических наблюдений с уче-
том показателя разреженности данных S. Как 
видно из полученных результатов в табл. 20, ис-
пользование предлагаемого метода расширения 
ОВ при оценке всех исследуемых ПК продуктов 
колонны фракционирования позволяет повы-
сить точность получаемых моделей в сравнении 
с вариантом использования ОВИСД.

ЗАКЛЮЧЕНИЕ
Предложен метод построения моделей для 

оценки ПК  целевых продуктов колонны фрак-
ционирования технологической установки ги-
дрокрекинга в условиях малого объема данных 
аналитического контроля. В основе метода ле-
жит расширение ОВ за счет добавления ДСД, 
отбираемого с учетом показателя разреженности 
из ВСД. ВСД получены с помощью построения 

Таблица 20. Критерии точности моделей на ТВ с разными вариантами ОВ для оценки ПК продуктов

ПК Вариант ОВ NОВ R2 САО ΔСАО, %

ПТФ среднего дистиллята
ОВ1 34 0.1935 3.5663 0.00
ОВ2 651 -0.0370 3.7096 4.02
ОВ3 122 0.3474 3.0291 -15.06

Твсп среднего дистиллята
ОВ1 46 0.4445 5.0140 0.00
ОВ2 676 0.5052 4.5810 -8.64
ОВ3 94 0.5235 4.4433 -11.38

Вязкость при 40ºC среднего 
дистиллята

ОВ1 41 0.0358 0.1100 0.00
ОВ2 827 0.0831 0.1047 -4.82
ОВ3 172 0.3311 0.0923 -16.09

ЦЧ среднего дистиллята
ОВ1 105 -1.3906 1.6145 0.00
ОВ2 617 0.1303 0.9900 -38.68
ОВ3 140 -0.0915 1.0393 -35.63

Твсп КФ
ОВ1 78 0.2462 1.6809 0.00
ОВ2 403 0.3877 1.5225 -9.42
ОВ3 103 0.4246 1.4933 -11.16
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вспомогательной модели на основе зависимости 
между РПК и ЧПК. Показана эффективность 
применения данного метода на примерах моде-
лей для оценки показателей качества среднего 
дистиллята и КФ, а также показана эффектив-
ность применения  НСПР  для построения вспо-
могательной модели. Снижение САО моделей на 
тестовой выборке, в сравнении с использовани-
ем в качестве ОВ известного сегмента данных, 
составило: при оценке ПТФ среднего дистилля-
та – 15.1%, Твсп среднего дистиллята – 11.4%, при 
оценке вязкости среднего дистиллята при 40ºC – 
16.1%, ЦЧ среднего дистиллята – 35.6% и Твсп 
КФ  – 11.2%. Показана эффективность исполь-
зования критерия разреженности при отборе 
синтетических наблюдений, при этом снижение 
САО моделей на тестовой выборке, в сравнении 
с вариантом добавления в ОВ всех синтетиче-
ских данных, составило: при оценке ПТФ сред-
него дистиллята – 18.3%, Твсп среднего дистилля-
та – 2.7%, ЦЧ среднего дистиллята – 11.8% и Твсп 
КФ – 1.9%.

Работа выполнена в рамках государ-
ственного задания ИАПУ ДВО РАН по теме 
№ FWFW-2021-0003 (метод построения моделей 
для оценки ПК в условиях малой обучающей вы-
борки) и FWFW-2025-0002 (реализация алгорит-
ма отбора наблюдений из ВСД и его апробация 
на технологических данных).

ОБОЗНАЧЕНИЯ
ai 	 индикатор того, что в i-м интервале есть 

хотя бы 1 наблюдение; 
b0 	 свободный коэффициент регрессии; 
bj 	  коэффициент при j-й входной перемен-

ной;
bRR 	 вектор коэффициентов робастной регрес-

сии;
c 	  константа настройки (для Fair c =1 4. ); 
E 	 матрица остатков; 
Hi 	 вектор, содержащий наблюдения выход-

ной переменной, попадающих в i-й интер-
вал;

hi 	 i-е значение вектора h;
h 	 вектор, состоящий из диагональных 

элементов матрицы X X X XT T( )−1 ; 

k 	 количество нейронов в скрытом слое ней-
ронной сети; 

ker( , )⋅ ⋅  	 функция ядра;
Lh 	 верхняя граница диапазона изменения вы-

ходной переменной;
Ll 	 нижняя граница диапазона изменения вы-

ходной переменной;

m 	 количество входных переменных;
med 	 медианное значение; 
N 	 количество наблюдений;
n 	 заданное количество интервалов;
Po

T  	 соответствующая y-ортогональная матри-
ца нагрузки;

Pp
T  	 y-прогнозная матрица нагрузки (англ. 

loading matrix); 
p1  	 вектор свободных членов скрытого слоя 

нейронной сети; 
p2 	 свободный член выходного слоя нейрон-

ной сети; 
pi  	 вектор смещения для нейронов выходного 

слоя; 
q 	 разряд числа для округления;
R2 	 коэффициент детерминации;
r 	 вектор значений для расчета весовых 

коэффициентов зависит от медианного 
значения модулей отклонений ошибок на 
предыдущем шаге итерации;

S 	 показатель разреженности;
To 	 соответствующая y-ортогональная матри-

ца вкладов;
Tp 	 y-прогнозная матрица вкладов (англ. score 

matrix);
W1  	 матрица весовых коэффициентов скрыто-

го слоя нейронной сети; 
w2  	 вектор весовых коэффициентов выходного 

слоя нейронной сети;
wi

( )1  	 вектор весов между входными нейронами 
и нейронами скрытого слоя;

wi
( )2  	 вектор масштабных коэффициентов 

между связями от нейронов скрытого слоя 
и выходным нейроном; 

X 	 матрица входных переменных; 
xi  	 i-я строка матрицы входных переменных 

X; 
xi j,  	 i-е наблюдение j-й входной переменной;
yi 	 i-е наблюдение выходной переменной;
yi
  	 оцениваемое значение i-го наблюдения 

выходной переменной;
y  	 среднее значение выходной переменной;

Δ 	 длина рассматриваемого интервала;
ε 	 вектор заданных ошибок;
εq 	 САО модели на ОВИСД в алгоритме форми-

рования ДСД на q-м шаге;
σ 	 параметр настройки в методе K-OPLS;
τ  	 дата и время, указанные в данных анали-

тического контроля; 
ϕ  	 функция активации скрытого слоя ней-

ронной сети; 
ωi  	 значение весового коэффициента для i-го 

наблюдения.
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ИНДЕКСЫ
i 	 номер наблюдения;
h 	  верхняя граница;
j 	 номер входной переменной;
l 	 нижняя граница;
o 	 обозначение y-ортогональной матрицы;
p 	 обозначение y-прогнозной матрицы;
q 	 номер шага в алгоритме формирования ДСД;
RR 	 робастная регрессия;
T 	 операция транспонирования.
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METHOD OF MODEL BUILDING FOR ESTIMATION OF QUALITY 
PARAMETERS OF FRACTIONATION COLUMN PRODUCTS UNDER 

CONDITIONS OF SMALL VOLUME OF ANALYTICAL CONTROL DATA
A. A. Plotnikov, D. V. Shtakin, О. Yu. Snegirev, A. Yu. Torgashov*

Institute of Automatics and Control Processes, Far East Branch, Russian Academy of Sciences, Vladivostok, Russia
*e-mail: torgashov@iacp.dvo.ru

Abstract. The problem of improving the accuracy of models for estimating the low-temperature properties, 
flammability and anti-wear properties of the target products of the fractionation column under conditions of a 
small amount of analytical control data is considered. For the solution of the considered problem the method 
of model building is proposed, which includes the algorithm of expansion of a small training sample on the 
data of fractional composition, differing in the way of selection of additional data, taking into account the 
sparsity indicator, which allowed to include the missing amount of data in the training sample, and as a result 
to ensure the improvement of the model quality. The use of the proposed method improved the accuracy 
of the models by 18% on average compared to the known methods and by 6% on average compared to the 
method based on the expansion of the training sample without taking into account the sparsity index. The 
results are presented on examples of model building of quality indicators of filterability limit temperature, 
flash point, kinematic toughness at 40°C and cetane number of middle distillate (diesel fuel fraction) and flash 
point of kerosene fraction of industrial fractionation column of hydrocracking process unit.

Keywords: mathematical models for assessing petroleum product quality indicators, rectification, small sample, 
sample expansion, sparsity, analytical control
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