- PII
- S3034605325030037-1
- DOI
- 10.7868/S3034605325030037
- Publication type
- Article
- Status
- Published
- Authors
- Volume/ Edition
- Volume 59 / Issue number 3
- Pages
- 23-33
- Abstract
- The ultimate possibilities of the process of rectification separation of multicomponent mixtures depend on the features of the structure of the liquid-vapor equilibrium diagram, in particular, on the presence of internal separating surfaces on the diagram. In the present work, the regularities of structure formation of separatrix surfaces of maximum dimensionality for systems of different chemical nature are investigated. For systems with homonymous deviations, when azeotropes relative to constituents of the same constituent are nodal points, we propose an approach to determine the number of saddle-shaped azeotropes of the first and (n-2) order and, respectively, the number of internal separatrix manifolds. The proposed approach is illustrated and confirmed on the example of model systems and industrial mixtures. The expediency of using one of the types of separation (first, second, intermediate) depending on the number and structure of internal separatrix surfaces is shown. The research presented in the article is directed to the development of the fundamental theory of thermodynamics of heterogeneous systems in the part of investigation of the structures of phase diagrams and mechanisms of their formation using thermodynamic and topological analysis within the framework of the general concept of the scientific school of Dr. Leonid Antonovich Serafimov, Professor.
- Keywords
- фазовая диаграмма равновесие жидкость-пар азеотроп сепаратриса ректификация правило азеотропии
- Date of publication
- 10.06.2025
- Year of publication
- 2025
- Number of purchasers
- 0
- Views
- 14
References
- 1. Жаров В.Т., Серафимов Л.А. Физико-химические основы дистилляции и ректификации. Л.: Химия, 1975.
- 2. Serafimov L.A. Thermodynamic and topological analysis of heterogeneous equilibrium diagrams of multicomponent mixtures // Russ. J. Phys. Chem. 2002. V. 76. № 8. С. 1211.
- 3. Serafimov L.A. State of the art in the thermodynamic and topological analysis of phase diagrams // Theor. Found. Chem. Eng. 2009. V. 43. № 3. С. 268. https://doi.org/10.1134/S0040579509030051.
- 4. Serafimov L.A., Frolkova A.V. Determination of vapor-liquid equilibrium diagrams of multicomponent systems // Chem. Pap. 2016. V. 70. № 12. Р. 1578. https://doi.org/10.1515/chempap-2016-0091
- 5. Серафимов Л.А., Фролкова А.В., Семин Г.А. Определение структуры диаграммы парожидкостного равновесия пятикомпонентной моноазеотропной системы // Вестник МИТХТ. 2014. Т. 9. № 3. С. 36.
- 6. Фролкова А.В. Структурный анализ фазовой диаграммы и оценка возможности ректификации многокомпонентных смесей // Теор. основы хим. технологии. 2024. Т. 58. № 1. С. 78. https://doi.org/10.31857/S0040357124010105
- 7. Frolkova A.V., Ososkova T.E., Frolkova A.K Thermodynamic and topological analysis of phase diagrams of quaternary systems with internal singular points // Theor. Found. Chem. Eng. 2020. V. 54. № 2. Р. 289. DOI: 10.31857/S0040357120020049
- 8. Safrit B.T., Westerberg A.W. Algorithm for generating the distillation regions for azeotropic multicomponent mixtures // Ind. Eng. Chem. Res. 1997. V. 36. Р. 1827. https://doi.org/10.1021/ie960344r.
- 9. Ahmad B.S., Zhang Y., Barton P.I. Product Sequences in Azeotropic Batch Distillation // AIChE J. 1998. V. 44. № 5. Р. 1051.
- 10. Rooks R.E., Doherty M.F., Malone M.F., Julka V. Structure of distillation regions for multicomponent azeotropic mixtures // AIChE J. 1998. V. 44. № 6. Р. 1382.
- 11. Popken T., Gmelding J. Simple Method for Determining the Location of Distillation Region Boundaries in Quaternary Systems // Ind. Eng. Chem. Res. 2004. V. 43. Р. 777. DOI: 10.1021/ie030303c.
- 12. Hegely L., Lang P. A new algorithm for the determination of product sequences in azeotropic batch distillation // Ind. Eng. Chem. Res. 2011. V. 50. № 22. Р. 12757. DOI: 10.1021/ie2016575
- 13. Blagov S., Hasse H. Topological analysis of vapor–liquid equilibrium diagrams for distillation process design // Phys. Chem. Chem. Phys. 2002. № 4. P. 896. DOI: 10.1039/b109541b.
- 14. Фролкова А.В., Охлопкова Е.А., Фролкова А.К. Термодинамико-топологический анализ структуры фазовой диаграммы пятикомпонентной системы и синтез схемы разделения смеси органических продуктов // Химия и технология органических веществ. 2020. Т. 16. № 4. С. 15. DOI: 10.54468/25876724_2020_4_15
- 15. Serafimov L.A., Frolkova A.V. The law of the algebraic sum of stationary points of vapor-liquid equilibrium diagrams of multicomponent mixtures // Theor. Found. Chem. Eng. 2013. V. 47. № 6. P. 680. DOI: 10.7868/S0040357113060092
- 16. Serafimov L.A., Frolokova A.K., Frolkova A.V. Poincaré integral invariants and separating manifolds of equilibrium open evaporation diagrams // Theor. Found. Chem. Eng. 2013. V. 47. № 2. P. 168. DOI: 10.7868/S004035711206022X
- 17. Frolkova A.V., Frolkova A.K., Zhuchkov V.I., Makhnariova Y.G. Homology and isomerism of the structures of phase diagrams and distillation flowsheets // Theor. Found. Chem. Eng. 2020. V. 54. № 5. P. 544. DOI: 10.31857/S0040357120050061
- 18. Yang A., Zou H., Chien I-L., Wang D. et al. Optimal Design and Effective Control of Triple–Column Extractive Distillation for Separating Ethyl Acetate/Ethanol/Water with Multi-Azeotrope // Ind. Eng. Chem. Res. 2019. V. 58. P. 7265. https://doi.org/10.1021/acs.iecr.9b00466
- 19. Jian X., Li J., Qing Ye, Liu X. Intensification and analysis of extractive distillation processes with preconcentration for separating ethyl acetate, isopropanol and water azeotropic mixtures // Sep. Purif. Technol. 2022. V. 287. P. 120499. https://doi.org/10.1016/j.seppur.2022.120499
- 20. Ma Z., Yao D., Zhao J., et al. Efficient recovery of benzene and n-propanol from wastewater via vapor recompression assisted extractive distillation based on techno-economic and environmental analysis // Process Safety and Environmental Protection. 2021. V. 148. P. 462. https://doi.org/10.1016/j.psep.2020.10.033
- 21. Shan B., Zheng Qi, Chen Z., Shen Y. et al. Dynamic control and performance comparison of conventional and dividing wall extractive distillation for benzene/isopropanol/water separation // J. Taiwan Institute of Chem. Engineers. 2021. V. 128. P. 1. https://doi.org/10.1016/j.jtice.2021.08.005
- 22. Жучков В.И., Рыжкин Д.А., Раева В.М. Экстрактивная ректификация смеси тетрагидрофуран–ацетонитрил–хлороформ // Теоретические основы химической технологии. 2023. Т. 57. № 1. С. 125. doi: 10.31857/S0040357123010153
- 23. Golikova A.D., Anufrikov Y.A., Shasherina A.Y., Misikov G.H., Toikka M.A., Samarov A.A., Toikka A.M. Excess enthalpies and heat of esterification reaction in acetic acid–n-butanol–n-butyl acetate–water system at 313.15 K // Russ. J. Gen. Chem. 2024. V. 94. № S1. P. S177. https://doi.org/10.1134/S1070363224140184
- 24. Misikov G., Zolotovsky K., Samarov A., Prikhodko I., Toikka M., Toikka A. Chemical equilibrium in the system acetic acid–n-amyl alcohol–n-amyl acetate–water at 323.15 K and atmospheric pressure: experimental data and equilibrium constant estimation // J. Chem. Eng. Data. 2024. V. 69. № 3. P. 1169. doi:10.1021/acs.jced.3c00744
- 25. Toikka M., Smirnov A., Trofimova M., Golikova A., Prikhodko I., Samarov A., Toikka A. Peculiarities of chemical equilibria in acetic acid–n-butyl alcohol–n-butyl acetate–water system at 318.15 K and 101.3 kPa // J. Chem. Eng.Data. 2023. V. 68. № 5. P. 1145. DOI: 10.1021/acs.jced.3c00009
- 26. Chicheva D.S., Krasnykh E.L., Shakun VA. Kinetic regularities of neopentyl glycol esterification with acetic and 2-ethylhexanoic acids // Fine Chem. Technol. 2024. V. 19. № 1. P. 28. https://doi.org/10.32362/2410-6593-2024-19-1-28-38
- 27. Serafimov L.A. The azeotropic rule and the classification of multicomponent mixtures. XI. Tangential azeotropy for three-component systems and chains of topological structures // Russ. J. Phys. Chem. 1971. T. 45. № 10. C. 1388.
- 28. Serafimov L.A., Chelyuskina T.V. Basic Properties of Tie-Line Vector Fields of Two-Phase Ternary Mixtures: Complex Singular Points. Theor. Found. Chem. Eng. 2003. V. 37, P. 482 https://doi.org/10.1023/A:1026094725970