RAS Chemistry & Material ScienceТеоретические основы химической технологии Theoretical Foundations of Chemical Engineering

  • ISSN (Print) 0040-3571
  • ISSN (Online) 3034-6053

On the Possibility of Cu(II) and Fe(III) Separation by Hydrophobic Eutectic Solvents Based on Trissobutylphosphine Sulfide

PII
S3034605325030087-1
DOI
10.7868/S3034605325030087
Publication type
Article
Status
Published
Authors
Volume/ Edition
Volume 59 / Issue number 3
Pages
71-82
Abstract
The present research work is devoted to studying the possibility of separation of copper(II) and iron(III) ions from hydrochloric acid solutions using hydrophobic eutectic solvents as extractants. New eutectic solvents trissobutylphosphine sulfide/octanol and trissobutylphosphine sulfide/octanoic acid were proposed and characterized for the first time. The eutectic solvents have low viscosity ( mPa s), which makes them technologically suitable extractants. A comparative analysis of the extraction efficiency of Cu(II) and Fe(III) with eutectic solvents, where menthol, octanol and octanoic acid were used as hydrogen bond donor, was carried out. The eutectic solvent based on octanoic acid is of the greatest interest as it is capable of selectively extracting metal ions over a wide range of aqueous phase acidity. In the absence of hydrochloric acid in the stock solution, β was 1432. The regularities of metal ions extraction at varying conditions of the process: acidity of the aqueous phase, volume ratio of phases and concentration of the salting out agent have been established. The possibility of purification of eutectic solvents from metal ions by different reextractants has been evaluated. The prospectivity of application of the proposed extraction systems for solving the problem of selective extraction of metal ions from technological solutions is shown.
Keywords
жидкостная экстракция ментол октанол октановая кислота переработка литий-ионные аккумуляторы
Date of publication
30.04.2025
Year of publication
2025
Number of purchasers
0
Views
13

References

  1. 1. Rauch J.N. Global Mapping of Al, Cu, Fe, and Zn in-Use Stocks and in-Ground Resources. // Proc. Natl. Acad. Sci. U.S.A. 2009. V. 106. № 45. P. 18920. doi:10.1073/pnas.0900658106.
  2. 2. Swain N., Mishra S. A Review on the Recovery and Separation of Rare Earths and Transition Metals from Secondary Resources. J Clean Prod. 2019. V. 220, P. 884. doi:10.1016/j.jclepro.2019.02.094.
  3. 3. Widmer R., Oswald-Krapf H., Sinha-Khetrival D. et al. Global Perspectives on E-Waste. // Environ Impact Assess Rev. 2005. V. 25. № 5. P. 436. doi:10.1016/j.eiar.2005.04.001.
  4. 4. Castillo J., Toro N., Hernández P. et al. Extraction of Cu(II), Fe(III), Zn(II), and Mn(II) from Aqueous Solutions with Ionic Liquid R4NCy. // Metals. 2021. V. 11. № 10. P. 1585. doi:10.3390/met11101585.
  5. 5. Tshepelevitski S., Hermits K., Jenсo J. et al. Systematic Optimization of Liquid–Liquid Extraction for Isolation of Unidentified Components. // ACS Omega. 2017. V. 2. № 11. P. 7772. doi:10.1021/acsomega.7b01445.
  6. 6. Schaeffer N., Martins M.A.R., Neves C.M.S.S. et al. Sustainable Hydrophobic Terpene-Based Eutectic Solvents for the Extraction and Separation of Metals. // Chem. Commun. 2018. V. 54. № 58. P. 8104. doi:10.1039/C8CC04152K.
  7. 7. Cañadas R., González-Miquel M., González E.J. et al. Hydrophobic Eutectic Solvents for Extraction of Natural Phenolic Antioxidants from Winery Wastewater. // Sep Purif Technol. 2021. V. 254. P. 117590. doi:10.1016/j.seppur.2020.117590.
  8. 8. Hanada T., Goto M. Cathode Recycling of Lithium-Ion Batteries Based on Reusable Hydrophobic Eutectic Solvents. // Green Chem. 2022. V. 24. P. 5107. doi:10.1039/D1GC04846E.
  9. 9. Marchel M., Rayaroth M.P., Wang C. et al. Hydrophobic (Deep) Eutectic Solvents (HDESs) as Extractants for Removal of Pollutants from Water and Wastewater - A Review // Chem. Eng. J. 2023. V. 475. P. 144971. doi:10.1016/j.cej.2023.144971.
  10. 10. Bashir I., Dar A.H., Dash K.K. et al. Deep Eutectic Solvents for Extraction of Functional Components from Plant-Based Products: A Promising Approach // Sustain. Chem. Pharm. 2023. V. 33. P. 101102. doi:10.1016/j.sep.2023.101102.
  11. 11. Milevskii N.A., Zinov'eva I.V., Zakhodyaeva Yu.A. et al. Separation of Li(I), Co(II), Ni(II), Mn(II), and Fe(III) from Hydrochloric Acid Solution Using a Menthol-Based Hydrophobic Deep Eutectic Solvent // Hydrometallurgy. 2022. V. 207. P. 105777. doi:10.1016/j.hydromet.2021.105777.
  12. 12. Kozhevnikova A.V., Zinov'eva I.V., Zakhodyaeva Y.A. et al. Application of Hydrophobic Deep Eutectic Solvents in Extraction of Metals from Real Solutions Obtained by Leaching Cathodes from End-of-Life Li-Ion Batteries // Processes. 2022. V. 10. № 12. P. 2671. doi:10.3390/pr10122671.
  13. 13. Ni S., Su J., Zhang H. et al. A Cleaner Strategy for Comprehensive Recovery of Waste SmCo Magnets Based on Deep Eutectic Solvents // Chem. Eng. J. 2021. V. 412. P. 128602. doi:10.1016/j.cej.2021.128602.
  14. 14. Milevskii N.A., Zinov'eva I.V., Kozhevnikova A.V. et al. Sm/Co Magnetic Materials: A Recycling Strategy Using Modifiable Hydrophobic Deep Eutectic Solvents Based on Trioctylphosphine Oxide // Int. J. Mol. Sci. 2023. V. 24. № 18. P. 14032. doi:10.3390/ijms241814032.
  15. 15. Zinov'eva I.V., Salomatin A.M., Zakhodyaeva Yu.A. et al. Extraction of Li(I), Al(III), and Fe(III) from Hydrochloric Solutions with Hydrophobic Eutectic Solvent TIBPS/Menthol. // Theor. Found. Chem. Eng. 2024. V. 58. № 4. P. 1143. doi:10.1134/S0040579525600263.
  16. 16. Ivanov A.V., Figurovskaya V.N., Ivanov V.M. Molecular Absorption Spectroscopy of 4-(2-Pyridilazo)Resorcinol Complexes as Alternative for the Atomic Absorption Spectroscopy. // Мосс. Univ. Chem. Bull. 1992. V. 33. № 6. P. 570.
  17. 17. Ogawa K., Tobe N. A Spectrophotometric Study of the Complex Formation between Iron(III) and Sulfosalicylic Acid // Bull. Chem. Soc. Jpn. 1966. V. 39. № 2. P. 223. doi:10.1246/bcsj.39.223.
  18. 18. Martins M.A.R., Crespo E.A., Pontes P.V.A. et al. Tunable Hydrophobic Eutectic Solvents Based on Terpenes and Monocarboxylic Acids // ACS Sustain. Chem. Eng. 2018. V. 6. № 7. P. 8836. doi:10.1021/acssuschemeng.8b01203.
  19. 19. Silverstein R.M., Webster F.X., Kiemle D.J. Spectrometric identification of organic compounds. 7 ed. New York: Wiley. 2005.
  20. 20. Omar K.A., Sadeghi R. Database of Deep Eutectic Solvents and Their Physical Properties: A Review. // J. Mol. Liq. 2023. V. 384. P. 121899. doi:10.1016/j.molliq.2023.121899.
  21. 21. Smith E.L., Abbott A.P., Ryder K.S. Deep Eutectic Solvents (DESs) and Their Applications. // Chem. Rev. 2014. V. 114. № 21. P. 11060. doi:10.1021/cr300162p.
  22. 22. Kozhevnikova A.V., Lobovich D.V., Milevskii N.A. et al. Kinetics and Reusability of Hydrophobic Eutectic Solvents in Continuous Extraction Processes in a Pilot Setting // Processes. 2024. V. 12. № 12. P. 2879. doi:10.3390/pr12122879.
  23. 23. Zhao H., Chang J., Boika A. et al. Electrochemistry of High Concentration Copper Chloride Complexes. // Anal. Chem. 2013. V. 85. № 16. P. 7696. doi:10.1021/ac4016769.
  24. 24. Liu W., Etschmann B., Brugger J. et al. UV-Vis Spectrophotometric and XAFS Studies of Ferric Chloride Complexes in Hyper-Saline LiCl Solutions at 25–90°C. // Chem. Geol. 2006. V. 231. № 4. P. 326. doi:10.1016/j.chemgeo.2006.02.005.
  25. 25. Kozhevnikova A.V., Zinov'eva I.V., Zakhodyaeva Yu.A. et al. Hydrophobic Eutectic Solvents Based on Alcohol and Camphor in the Extraction of Fe(III) from Hydrochloric Solutions // Theor. Found. Chem. Eng. 2024. V. 58. № 5. P. 1575. doi:10.1134/S0040579525600664.
QR
Translate

Indexing

Scopus

Scopus

Scopus

Crossref

Scopus

Higher Attestation Commission

At the Ministry of Education and Science of the Russian Federation

Scopus

Scientific Electronic Library