RAS Chemistry & Material ScienceТеоретические основы химической технологии Theoretical Foundations of Chemical Engineering

  • ISSN (Print) 0040-3571
  • ISSN (Online) 3034-6053

Modeling of the processing of alkanthiols into disulfides using ionic liquids

PII
S30346053S0040357125010037-1
DOI
10.7868/S3034605325010037
Publication type
Article
Status
Published
Authors
Volume/ Edition
Volume 59 / Issue number 1
Pages
23-33
Abstract
A functional model of environmentally safe and energy-saving technology for removal of toxic alcanthiols for their processing into practically useful disulfides using ionic liquids is proposed. The process is based on mediator electrooxidation of alcanthiols removed from liquid fuels by extraction with ionic liquids. The developed method of indirect electrosynthesis of symmetrical disulfides is realized under mild conditions, in the environment of electrically conductive ionic liquids, acting as a solvent and background electrolyte. The use of mediator contributes to the increase of electrosynthesis efficiency and reduction of energy consumption for its realization in comparison with the direct electrochemical oxidative transformation of alcanthiols into disulfides.
Keywords
алкантиолы симметричные диалкилдисульфиды ионные жидкости жидкое топливо обессеривание электроокисление медиаторный электросинтез функциональная модель
Date of publication
03.02.2025
Year of publication
2025
Number of purchasers
0
Views
79

References

  1. 1. Harlan W. Nelson, Carl J. Lyons. Sources and control of sulfur-bearing pollutants // J. Air Pollut. Control Assoc. 2012. V. 7. № 3. P. 187. https://doi.org/10.1080/00966665.1957.10467800
  2. 2. Perraud V., Horne J.R., Martinez A.S., Kalinowski J., Meinardi S., Dawson M.L., Wingen Lisa M., Dabdub D., Blake D.R., Gerber R.B., Finlayson-Pitts B.J. The future of airborne sulfur-containing particles in the absence of fossil fuel sulfur dioxide emissions // PNAS. 2015. V. 112. № 44. P. 13519. https://doi.org/10.1073/pnas.1510743112
  3. 3. Tanimu A., Alhooshani K. Advanced Hydrodesulfurization Catalysts: A Review of Design and Synthesis // Energy Fuels. 2019. V. 33. № 4. P. 2810. https://doi.org/10.1021/acs.energyfuels.9b00354.
  4. 4. Dehkordi A.M., Sobati M.A., Nazem M.A. Oxidative Desulfurization of Non-hydrotreated Kerosene Using Hydrogen Peroxide and Acetic Acid // Chin. J. Chem. Eng. 2009. V. 17. № 5. P. 869. https://doi.org/10.1016/S1004-9541 (08)60289-X
  5. 5. Moghadam F. R., Kianpour E., Azizian S., Meysam Y., Zolfigo M. A. Extractive desulfurization of liquid fuel using diamineterminated polyethylene glycol as a very low vapour pressure and green molecular solvent // Soc. Open Sci. 7: 200803. https://doi.org/10.1098/rsos.200803
  6. 6. Gao J., Zhu S., Dai Y., Xiong C., Li C., Yang W., Jiang X. Performance and mechanism for extractive desulfurization of fuel oil using modified polyethylene glycol // Fuel. 2018. V. 233. P. 704. https://doi.org/10.1016/j.fu-el.2018.06.101
  7. 7. Meng X., Zhou P. Li L., Liu L., Guo M., Sun T. A study of the desulfurization selectivity of a reductive and extractive desulfurization process with sodium borohy-dride in polyethylene glycol // Scientific Reports. 2020. V. 10. P. 10450 https://doi.org/10.1038/s41598-020-67235-8
  8. 8. Abro R., Abdeltawab A.A., Al-Deyab S.S., Yu G., Qazi A.B., Gao S., Chen X. A review of extractive desulfurization of fuel oils using ionic liquids // RSC Advances. 2014. V. 4. № 67. P. 35302. https://doi.org/10.1039/C4RA03478C
  9. 9. Francisco M., Arce A., Soto A. Ionic liquids on desulfurization of fuel oils // Fluid Phase Equilibria. 2010. V. 294. № 1-2. P. 39. https://doi.org/10.1016/j.flu-id.2009.12.020
  10. 10. Ferreira A.R., Neves L.A., Ribeiro J. C., Lopes F.M., Coutinho J.A.P., Coelhoso I. M., Crespo J.G. Removal of thiols from model jet-fuel streams assisted by ionic liquid membrane extraction // Chem. Eng. J. 2014. V. 256. № 15. P. 144. https://doi.org/10.1016/j.cej.2014.06.107
  11. 11. Yu F., Liu C., Yuan B., Xie P. Energy-efficient extractive desulfurization of gasoline by polyether-based ionic liquids // Fuel. 2016. V. 177. P. 39. https://doi.org/10.1016/j.fuel.2016.02.063
  12. 12. Gao J., Meng H., Lu Y., Zhang H., Li C. A carbonium pseudo ionic liquid with excellent extractive desulfurization performance // AlChE J. 2013. V. 59. P. 948. https://doi.org/10.1002/aic.13869
  13. 13. Eco-Friendly Energy Processes and Technologies for Achieving Sustainable Development/ Danish M. S. S., Senjyu T. S., Publisher: IGI Global, 2020. https://doi.org/10.4018/978-1-7998-4915-5
  14. 14. Meshalkin V.P., Kulov N.N., Guseva T.V., Tikhonova I.O., Burvikova Yu.N., Bhimani Ch., Shchelchkov K.A. Best Available Techniques and Green Chemical Technology: Possibilities for Convergence of Concepts // Theor. Found. Chem. Eng. 2022. V. 56. № 6. P. 670.
  15. 15. Leech M.C., Garcia A.D., Petti A.A., Dobbs P., Lam K. Organic electrosynthesis from academia to industry // React. Chem. Eng. 2020. V. 5. № 6. P. 977.
  16. 16. Francke R., Little R.D., Inagi S. Organic Electrosynthesis // ChemElectroChem 2019. № 6. Р. 4065. https://doi.org/10.1002/celc.201901175
  17. 17. Cardoso D.S.P., Šljukić B., Santos D.M.F., Sequeira C.A.C. Organic Electrosynthesis: From Laboratorial Practice to Industrial Applications //Org. Process Res. Dev. 2017. V. 21. № 9. P. 1213. https://doi.org/10.1021/acs.oprd.7b00004
  18. 18. Moiseev I. Green chemistry: development jectory // Russ. Chem. Rev. 2013. V. 82. № 7. P. 616. https://doi.org/10.1070/RC2013v082n07ABEH004393.
  19. 19. Fron-tana-Uribe B.A., Little R.D., Ibanez J.G., Palma A., Vasquez-Medrano R. Organic electrosynthesis: a promising green methodology in organic chemistry // Green Chem. 2010. V. 12. № 12. P. 2099. https://doi.org/10.1039/C0GC00382D.
  20. 20. Ratti R. Ionic Liquids: Synthesis and Applications in Catalysis // Adv. in Chem. 2014. ID 729842. https://doi.org/10.1155/2014/729842
  21. 21. Earle M.J., Seddon K.R. Ionic liquids. Green solvents for the future // Pure and Appl. Chem. 2000. V. 72. № 7. P. 1391. https://doi.org/10.1351/pac200072071391
  22. 22. Kathiresan M., Velayutham D. Ionic liquids as an electrolyte for the electrosynthesis of organic compounds // Chem.Com. 2015. V. 99. № 51. P. 17499. https://doi.org/10.1039/C5CC06961K
  23. 23. Bornemann S., Handy S.T. Synthetic Organic Electrochemistry in Ionic Liquids: The Viscosity Question // Molecules. 2011. V. 16. P. 5963. https://doi.org/10.3390/molecules16075963
  24. 24. Mandal B., Basu B. Recent advances in S-S bond formation // RSC Adv. 2014. V. 4. № 27. P. 13854. https://doi.org/10.1039/C3RA45997G
  25. 25. Huang P., Wang P., Tang S., Fu Z., Lei A. Electro-oxidative S-H/S-H cross-coupling with hydrogen evolution: facile access to unsymmetrical disulfides // Angewandte. 2018. V. 57. № 27. P. 8115. https://doi.org/10.1002/anie.201803464
  26. 26. Trost B.M. On inventing reactions for atom economy // Acc. Chem. Res. 2002. V. 35. №. 9. P. 695. https://doi.org/10.1021/ar010068z
  27. 27. Novaes L.F.T., Liu J., Shen Y., Lu L., Meinhardt J.M., Lin S. Electrocatalysis as an enabling technology for organic synthesis // Chem. Soc. Rev. 2021. V. 50. № 14. P. 7941. https://doi.org/10.1039/d1cs00223f
  28. 28. Kitada S., Takahashi M., Yamaguchi Y., Okada Y., Chiba K. Soluble-support-assisted electrochemical reactions: application to anodic disulfide bond formation // Org. Let. 2012. V. 23. № 14. P. 5960. https://doi.org/10.1021/ol302863r
  29. 29. Zhang G., Etzold B. Ionic liquids in electrocatalysis // JEnergyChem. 2016, V. 25. № 2. P. 199. https://doi.org/10.1016/j.jechem.2016.01.007
  30. 30. Wang X.-F., Zhang S., Li B.-L., Zhao J.-J., Liu Y.-M., Zhang R.-L., Li B., Chen B.-Q. Synthesis and biological evaluation of disulfides bearing 1,2,4-triazole moiety as antiproliferative agents // Med. Chem. Res. 2017. V. 26. P. 3367. https://doi.org/10.1007/s00044-017-2029-0
  31. 31. Feng M., Tang B., Liang S.H., Jiang X. Sulfur containing scaffolds in drugs: synthesis and application in medicinal chemistry // Curr. Top. Med. Chem. 2016. V. 16. № 11. P. 1200. https://doi.org/10.2174/15680266 15666150915111741
  32. 32. Wang W., Lin Y., Ma Y., Tung C.-H., Xu Z. Cu-catalyzed electrophilic disulfur transfer: synthesis of unsymmetrical disulfides // Org. Lett. 2018. V. 20. № 13. P. 3829. https://doi.org/10.1021/acs.orglett.8b01418
  33. 33. Kuramochi K., Sunoki T., Tsubaki K., Mizushina Y., Sakaguchi K., Sugawara F., Ikekita M., Kobayashi S. Transformation of thiols to disulfides by epolactaene and its derivatives // Bioorg. Med. Chem. 2011. V. 19. № 14. P. 4162. https://doi.org/10.1016/j.bmc.2011.06.015
  34. 34. Natarajan P., Sharma H., Kaur M., Sharma P. Haloacid/dimethyl sulfoxide-catalyzed synthesis of symmetrical disulfides by oxidation of thiols // Tetrahedron Lett. 2015. V. 56. № 41. P. 5578. https://doi.org/10.1016/j. tetlet.2015.08.041
  35. 35. Leino R., Lonnqvist J.-E. A very simple method for the preparation of symmetrical disulfides. Tetr. Let. 2004. V. 45. № 46. P. 8489. https://doi.Org/10.1016/j.tet-let.2004.09.100
  36. 36. Berberova N.T., Shinkar E.V., Smolyaninov I.V., Pashchenko K.P. Redox-mediators of hydrogen sulfide oxidation in reactions with cycloalkanes // Doklady Chem. 2015. V. 465. № 2. P. 295.
  37. 37. Berberova N.T., Shinkar E.V., Smolyaninov I.V., Shvetsova A.V., Sediki D.B. Electrosynthesis of biologically active dicycloalkyl di- and trisulfides involving an H2S-S8 redox system // Russ. Chem. Bull. 2018. V. 67. № 1. P. 108.
  38. 38. Bogomolov B.B., Boldyrev V.S., Zubarev A.M., Meshalkin VP, Men’shikov VV Intelligent Logical Information Algorithm for Choosing Energy - and Resource-Efficient Chemical Technologies // Theor. Found. Chem. Eng. 2019. V. 53. № 5. P. 483.
  39. 39. Bogomolov B.B., Bykov E.D., Men’shikov V.V., Zubarev A.M. Organizational and technological modeling of chemical process systems // Theoret. Found. Chem. Eng. 2017. V. 51. № 2. P. 238.
  40. 40. Meshalkin V., Shinkar E., Berberova N., Pivovarova N., Ismagilov F., Okhlobystin A. Logical-information model of energy-saving production of organic sulfur compounds from low-molecular sulfur waste fuel oil // Energies. 2020. V. 13. e 5286. https://doi.org/10.3390/en13205286
  41. 41. Гордон А., Форд Р. Спутник химика. М: Мир, 1976. [A.J. Gordon, R.A. Ford, The chemist’s companion, A Wiley interscience publication, New York, 1972.].
  42. 42. Байзер М.М., Лунд Х. Органическая электрохимия, М: Химия, 1988. [M.M. Baizer, H. Lund, Organic electrochemistry, New York; Marcel Dekker, 1983].
  43. 43. Okhlobystina A.V., Okhlobystin A.O., Letichevskaya N.N., Abdulaeva V.F., Berberova N.T., Movchan N.O. Electrochemical synthesis of aromatic sulfur compounds in ionic liquids // Russ. J. Gen. Chem. 2016. V. 86. № 2. P. 291.
  44. 44. Yu Y.-H., Soriano A., Li M.-H. Heat capacities and electrical conductivities of 1-n-butyl-3-methylimid-azolium-based ionic liquids // Thermochimica Acta. 2009. V. 482, № 1-2. P. 42. https://doi.org/10.1016/j. tca.2008.10.015
  45. 45. Plechkova N.V., Seddon K.R. Ionic liquids further UnCOILed: critical expert overviews / N.V. Plechkova, K.R. Seddon, John Wiley & Sons, Inc., 2014.
  46. 46. Safarov J., Kul I., El-Awady W.A., Nocke J., Shahverdiyev A., Hassel E. Thermophysical properties of 1-butyl-4-methylpyridinium tetrafluoroborate // J. Chem. Thermodynamics. 2012. V. 51. P. 82. https://doi.org/10.1016/j.jct.2012.02.018
  47. 47. Singh T., Kumar A. Static dielectric constant of room temperature ionic liquids: internal pressure and cohesive energy density approach // J. Phys. Chem. B. 2008. V. 112. № 41. P. 12968. https://doi.org/10.1021/jp8059618
  48. 48. Helambe, S.N., Lokhande M.P., Kumbharkhane A.C., Mehrotra S.C., Doraiswamy S. Dielectric study of aqueous solution of acetonitrile // Pramana - J Phys. 1995. V. 44. P. 405. https://doi.org/10.1007/BF02848492
  49. 49. Vila J., Varela L.M., Cabeza O. Cation and anion sizes influence in the temperature dependence of the electrical conductivity in nine imidazolium based ionic liquids // Electrochimica Acta. 2007. V. 52. № 26. P. 7413. https://doi.org/10.1016/j.electacta.2007.06.044
  50. 50. Okhlobystina A.V., Okhlobystin A.O., Letichevskaya N.N., Abdulaeva V.F., Berberova N.T., Movchan N.O. An alternative method for the desulfurization of hydrocarbon fuels // Mendeleev Commun. 2017. V. 27. № 1. P. 104.
QR
Translate

Индексирование

Scopus

Scopus

Scopus

Crossref

Scopus

Higher Attestation Commission

At the Ministry of Education and Science of the Russian Federation

Scopus

Scientific Electronic Library