- Код статьи
- S30346053S0040357125010037-1
- DOI
- 10.7868/S3034605325010037
- Тип публикации
- Статья
- Статус публикации
- Опубликовано
- Авторы
- Том/ Выпуск
- Том 59 / Номер выпуска 1
- Страницы
- 23-33
- Аннотация
- Предложена функциональная модель экологически безопасной и энергоресурсосберегающей технологии удаления токсичных алкантиолов для переработки их в практически полезные дисульфиды с использованием ионных жидкостей. Процесс основан на медиаторном электроокислении алкантиолов, удаленных из жидкого топлива экстракцией ионными жидкостями. Разработанный метод непрямого электросинтеза симметричных дисульфидов реализуется в мягких условиях, в среде электропроводящих ионных жидкостей, выполняющих функцию растворителя и фонового электролита. Использование медиатора способствует повышению эффективности электросинтеза и снижению энергозатрат на его проведение по сравнению с прямым электрохимическим окислительным превращением алкантиолов в дисульфиды.
- Ключевые слова
- алкантиолы симметричные диалкилдисульфиды ионные жидкости жидкое топливо обессеривание электроокисление медиаторный электросинтез функциональная модель
- Дата публикации
- 03.02.2025
- Год выхода
- 2025
- Всего подписок
- 0
- Всего просмотров
- 77
Библиография
- 1. Harlan W. Nelson, Carl J. Lyons. Sources and control of sulfur-bearing pollutants // J. Air Pollut. Control Assoc. 2012. V. 7. № 3. P. 187. https://doi.org/10.1080/00966665.1957.10467800
- 2. Perraud V., Horne J.R., Martinez A.S., Kalinowski J., Meinardi S., Dawson M.L., Wingen Lisa M., Dabdub D., Blake D.R., Gerber R.B., Finlayson-Pitts B.J. The future of airborne sulfur-containing particles in the absence of fossil fuel sulfur dioxide emissions // PNAS. 2015. V. 112. № 44. P. 13519. https://doi.org/10.1073/pnas.1510743112
- 3. Tanimu A., Alhooshani K. Advanced Hydrodesulfurization Catalysts: A Review of Design and Synthesis // Energy Fuels. 2019. V. 33. № 4. P. 2810. https://doi.org/10.1021/acs.energyfuels.9b00354.
- 4. Dehkordi A.M., Sobati M.A., Nazem M.A. Oxidative Desulfurization of Non-hydrotreated Kerosene Using Hydrogen Peroxide and Acetic Acid // Chin. J. Chem. Eng. 2009. V. 17. № 5. P. 869. https://doi.org/10.1016/S1004-9541 (08)60289-X
- 5. Moghadam F. R., Kianpour E., Azizian S., Meysam Y., Zolfigo M. A. Extractive desulfurization of liquid fuel using diamineterminated polyethylene glycol as a very low vapour pressure and green molecular solvent // Soc. Open Sci. 7: 200803. https://doi.org/10.1098/rsos.200803
- 6. Gao J., Zhu S., Dai Y., Xiong C., Li C., Yang W., Jiang X. Performance and mechanism for extractive desulfurization of fuel oil using modified polyethylene glycol // Fuel. 2018. V. 233. P. 704. https://doi.org/10.1016/j.fu-el.2018.06.101
- 7. Meng X., Zhou P. Li L., Liu L., Guo M., Sun T. A study of the desulfurization selectivity of a reductive and extractive desulfurization process with sodium borohy-dride in polyethylene glycol // Scientific Reports. 2020. V. 10. P. 10450 https://doi.org/10.1038/s41598-020-67235-8
- 8. Abro R., Abdeltawab A.A., Al-Deyab S.S., Yu G., Qazi A.B., Gao S., Chen X. A review of extractive desulfurization of fuel oils using ionic liquids // RSC Advances. 2014. V. 4. № 67. P. 35302. https://doi.org/10.1039/C4RA03478C
- 9. Francisco M., Arce A., Soto A. Ionic liquids on desulfurization of fuel oils // Fluid Phase Equilibria. 2010. V. 294. № 1-2. P. 39. https://doi.org/10.1016/j.flu-id.2009.12.020
- 10. Ferreira A.R., Neves L.A., Ribeiro J. C., Lopes F.M., Coutinho J.A.P., Coelhoso I. M., Crespo J.G. Removal of thiols from model jet-fuel streams assisted by ionic liquid membrane extraction // Chem. Eng. J. 2014. V. 256. № 15. P. 144. https://doi.org/10.1016/j.cej.2014.06.107
- 11. Yu F., Liu C., Yuan B., Xie P. Energy-efficient extractive desulfurization of gasoline by polyether-based ionic liquids // Fuel. 2016. V. 177. P. 39. https://doi.org/10.1016/j.fuel.2016.02.063
- 12. Gao J., Meng H., Lu Y., Zhang H., Li C. A carbonium pseudo ionic liquid with excellent extractive desulfurization performance // AlChE J. 2013. V. 59. P. 948. https://doi.org/10.1002/aic.13869
- 13. Eco-Friendly Energy Processes and Technologies for Achieving Sustainable Development/ Danish M. S. S., Senjyu T. S., Publisher: IGI Global, 2020. https://doi.org/10.4018/978-1-7998-4915-5
- 14. Meshalkin V.P., Kulov N.N., Guseva T.V., Tikhonova I.O., Burvikova Yu.N., Bhimani Ch., Shchelchkov K.A. Best Available Techniques and Green Chemical Technology: Possibilities for Convergence of Concepts // Theor. Found. Chem. Eng. 2022. V. 56. № 6. P. 670.
- 15. Leech M.C., Garcia A.D., Petti A.A., Dobbs P., Lam K. Organic electrosynthesis from academia to industry // React. Chem. Eng. 2020. V. 5. № 6. P. 977.
- 16. Francke R., Little R.D., Inagi S. Organic Electrosynthesis // ChemElectroChem 2019. № 6. Р. 4065. https://doi.org/10.1002/celc.201901175
- 17. Cardoso D.S.P., Šljukić B., Santos D.M.F., Sequeira C.A.C. Organic Electrosynthesis: From Laboratorial Practice to Industrial Applications //Org. Process Res. Dev. 2017. V. 21. № 9. P. 1213. https://doi.org/10.1021/acs.oprd.7b00004
- 18. Moiseev I. Green chemistry: development jectory // Russ. Chem. Rev. 2013. V. 82. № 7. P. 616. https://doi.org/10.1070/RC2013v082n07ABEH004393.
- 19. Fron-tana-Uribe B.A., Little R.D., Ibanez J.G., Palma A., Vasquez-Medrano R. Organic electrosynthesis: a promising green methodology in organic chemistry // Green Chem. 2010. V. 12. № 12. P. 2099. https://doi.org/10.1039/C0GC00382D.
- 20. Ratti R. Ionic Liquids: Synthesis and Applications in Catalysis // Adv. in Chem. 2014. ID 729842. https://doi.org/10.1155/2014/729842
- 21. Earle M.J., Seddon K.R. Ionic liquids. Green solvents for the future // Pure and Appl. Chem. 2000. V. 72. № 7. P. 1391. https://doi.org/10.1351/pac200072071391
- 22. Kathiresan M., Velayutham D. Ionic liquids as an electrolyte for the electrosynthesis of organic compounds // Chem.Com. 2015. V. 99. № 51. P. 17499. https://doi.org/10.1039/C5CC06961K
- 23. Bornemann S., Handy S.T. Synthetic Organic Electrochemistry in Ionic Liquids: The Viscosity Question // Molecules. 2011. V. 16. P. 5963. https://doi.org/10.3390/molecules16075963
- 24. Mandal B., Basu B. Recent advances in S-S bond formation // RSC Adv. 2014. V. 4. № 27. P. 13854. https://doi.org/10.1039/C3RA45997G
- 25. Huang P., Wang P., Tang S., Fu Z., Lei A. Electro-oxidative S-H/S-H cross-coupling with hydrogen evolution: facile access to unsymmetrical disulfides // Angewandte. 2018. V. 57. № 27. P. 8115. https://doi.org/10.1002/anie.201803464
- 26. Trost B.M. On inventing reactions for atom economy // Acc. Chem. Res. 2002. V. 35. №. 9. P. 695. https://doi.org/10.1021/ar010068z
- 27. Novaes L.F.T., Liu J., Shen Y., Lu L., Meinhardt J.M., Lin S. Electrocatalysis as an enabling technology for organic synthesis // Chem. Soc. Rev. 2021. V. 50. № 14. P. 7941. https://doi.org/10.1039/d1cs00223f
- 28. Kitada S., Takahashi M., Yamaguchi Y., Okada Y., Chiba K. Soluble-support-assisted electrochemical reactions: application to anodic disulfide bond formation // Org. Let. 2012. V. 23. № 14. P. 5960. https://doi.org/10.1021/ol302863r
- 29. Zhang G., Etzold B. Ionic liquids in electrocatalysis // JEnergyChem. 2016, V. 25. № 2. P. 199. https://doi.org/10.1016/j.jechem.2016.01.007
- 30. Wang X.-F., Zhang S., Li B.-L., Zhao J.-J., Liu Y.-M., Zhang R.-L., Li B., Chen B.-Q. Synthesis and biological evaluation of disulfides bearing 1,2,4-triazole moiety as antiproliferative agents // Med. Chem. Res. 2017. V. 26. P. 3367. https://doi.org/10.1007/s00044-017-2029-0
- 31. Feng M., Tang B., Liang S.H., Jiang X. Sulfur containing scaffolds in drugs: synthesis and application in medicinal chemistry // Curr. Top. Med. Chem. 2016. V. 16. № 11. P. 1200. https://doi.org/10.2174/15680266 15666150915111741
- 32. Wang W., Lin Y., Ma Y., Tung C.-H., Xu Z. Cu-catalyzed electrophilic disulfur transfer: synthesis of unsymmetrical disulfides // Org. Lett. 2018. V. 20. № 13. P. 3829. https://doi.org/10.1021/acs.orglett.8b01418
- 33. Kuramochi K., Sunoki T., Tsubaki K., Mizushina Y., Sakaguchi K., Sugawara F., Ikekita M., Kobayashi S. Transformation of thiols to disulfides by epolactaene and its derivatives // Bioorg. Med. Chem. 2011. V. 19. № 14. P. 4162. https://doi.org/10.1016/j.bmc.2011.06.015
- 34. Natarajan P., Sharma H., Kaur M., Sharma P. Haloacid/dimethyl sulfoxide-catalyzed synthesis of symmetrical disulfides by oxidation of thiols // Tetrahedron Lett. 2015. V. 56. № 41. P. 5578. https://doi.org/10.1016/j. tetlet.2015.08.041
- 35. Leino R., Lonnqvist J.-E. A very simple method for the preparation of symmetrical disulfides. Tetr. Let. 2004. V. 45. № 46. P. 8489. https://doi.Org/10.1016/j.tet-let.2004.09.100
- 36. Berberova N.T., Shinkar E.V., Smolyaninov I.V., Pashchenko K.P. Redox-mediators of hydrogen sulfide oxidation in reactions with cycloalkanes // Doklady Chem. 2015. V. 465. № 2. P. 295.
- 37. Berberova N.T., Shinkar E.V., Smolyaninov I.V., Shvetsova A.V., Sediki D.B. Electrosynthesis of biologically active dicycloalkyl di- and trisulfides involving an H2S-S8 redox system // Russ. Chem. Bull. 2018. V. 67. № 1. P. 108.
- 38. Bogomolov B.B., Boldyrev V.S., Zubarev A.M., Meshalkin VP, Men’shikov VV Intelligent Logical Information Algorithm for Choosing Energy - and Resource-Efficient Chemical Technologies // Theor. Found. Chem. Eng. 2019. V. 53. № 5. P. 483.
- 39. Bogomolov B.B., Bykov E.D., Men’shikov V.V., Zubarev A.M. Organizational and technological modeling of chemical process systems // Theoret. Found. Chem. Eng. 2017. V. 51. № 2. P. 238.
- 40. Meshalkin V., Shinkar E., Berberova N., Pivovarova N., Ismagilov F., Okhlobystin A. Logical-information model of energy-saving production of organic sulfur compounds from low-molecular sulfur waste fuel oil // Energies. 2020. V. 13. e 5286. https://doi.org/10.3390/en13205286
- 41. Гордон А., Форд Р. Спутник химика. М: Мир, 1976. [A.J. Gordon, R.A. Ford, The chemist’s companion, A Wiley interscience publication, New York, 1972.].
- 42. Байзер М.М., Лунд Х. Органическая электрохимия, М: Химия, 1988. [M.M. Baizer, H. Lund, Organic electrochemistry, New York; Marcel Dekker, 1983].
- 43. Okhlobystina A.V., Okhlobystin A.O., Letichevskaya N.N., Abdulaeva V.F., Berberova N.T., Movchan N.O. Electrochemical synthesis of aromatic sulfur compounds in ionic liquids // Russ. J. Gen. Chem. 2016. V. 86. № 2. P. 291.
- 44. Yu Y.-H., Soriano A., Li M.-H. Heat capacities and electrical conductivities of 1-n-butyl-3-methylimid-azolium-based ionic liquids // Thermochimica Acta. 2009. V. 482, № 1-2. P. 42. https://doi.org/10.1016/j. tca.2008.10.015
- 45. Plechkova N.V., Seddon K.R. Ionic liquids further UnCOILed: critical expert overviews / N.V. Plechkova, K.R. Seddon, John Wiley & Sons, Inc., 2014.
- 46. Safarov J., Kul I., El-Awady W.A., Nocke J., Shahverdiyev A., Hassel E. Thermophysical properties of 1-butyl-4-methylpyridinium tetrafluoroborate // J. Chem. Thermodynamics. 2012. V. 51. P. 82. https://doi.org/10.1016/j.jct.2012.02.018
- 47. Singh T., Kumar A. Static dielectric constant of room temperature ionic liquids: internal pressure and cohesive energy density approach // J. Phys. Chem. B. 2008. V. 112. № 41. P. 12968. https://doi.org/10.1021/jp8059618
- 48. Helambe, S.N., Lokhande M.P., Kumbharkhane A.C., Mehrotra S.C., Doraiswamy S. Dielectric study of aqueous solution of acetonitrile // Pramana - J Phys. 1995. V. 44. P. 405. https://doi.org/10.1007/BF02848492
- 49. Vila J., Varela L.M., Cabeza O. Cation and anion sizes influence in the temperature dependence of the electrical conductivity in nine imidazolium based ionic liquids // Electrochimica Acta. 2007. V. 52. № 26. P. 7413. https://doi.org/10.1016/j.electacta.2007.06.044
- 50. Okhlobystina A.V., Okhlobystin A.O., Letichevskaya N.N., Abdulaeva V.F., Berberova N.T., Movchan N.O. An alternative method for the desulfurization of hydrocarbon fuels // Mendeleev Commun. 2017. V. 27. № 1. P. 104.