RAS Chemistry & Material ScienceТеоретические основы химической технологии Theoretical Foundations of Chemical Engineering

  • ISSN (Print) 0040-3571
  • ISSN (Online) 3034-6053

Crystallization and solubility of KSc(SO) for improving the efficiency of scandium extraction

PII
S30346053S0040357125010105-1
DOI
10.7868/S3034605325010105
Publication type
Article
Status
Published
Authors
Volume/ Edition
Volume 59 / Issue number 1
Pages
86-93
Abstract
In the development of methods for the efficient extraction and concentration of rare earth elements (REE), as well as for the removal of impurities of related metals, the solubility of salts, in particular sulfates, often used in hydrometallurgy as intermediates, is of great importance. In this work, the precipitation of complex potassium scandium sulfate KSc(SO), whose crystals are elongated hexagonal prisms 5-10 µm wide and 20-50 µm long, was proposed for the extraction of scandium from sulfate solutions. The absence of crystallization water and the presence of a reversible phase transition around 447°C are shown by DTA method. The solubility of KSc(SO) in water at 25°C was 0.28±0.01 wt.% Sc. A decrease in the solubility of KSc(SO) was achieved by increasing the concentration of sulfuric acid (HSO) over 3-4 mol/L. Additional introduction of 0.5 mol/L KSO reduces the solubility of scandium as a complex compound by an order of magnitude and increases the efficiency of scandium extraction from sulfate solutions. Experimental results on the solubility of KSc(SO) are described by the change in the ionic strength of the solution in the presence of homonymous ions (K and HSO). The degree of scandium extraction from sulfate solutions with the addition of 0.5 mol/L KSO is more than 99%. The principal technological scheme of scandium extraction from red slimes with crystallization of KSc(SO) is proposed. The results will be useful for the development of methods of metal separation at sulfuric acid processing of raw materials and expansion of methods for obtaining concentrates and pure metal oxides, as well as for studying the behavior of REE compounds close in properties.
Keywords
сульфат скандия сульфат калия комплексообразование растворимость кристаллизация гидрометаллургия извлечение
Date of publication
03.02.2025
Year of publication
2025
Number of purchasers
0
Views
69

References

  1. 1. Гилярова А.А. Редкоземельные металлы: применение в Hi-Tech и потенциал Кольского полуострова // Экономика и бизнес: теория и практика. 2018. №3. С. 40. ID: 32794608.
  2. 2. Кондратьев В.Б. Глобальный рынок редкоземельных металлов / В.Б. Кондратьев // Горная промышленность. 2017. Т. 4 № 134. С. 97. ID: 29987254.
  3. 3. Соловьева В.М., Череповицын А.Е. Организационноэкономические модели развития редкоземельных промышленных комплексов: российский и зарубежный опыт // Вестник ЮРГТУ (НПИ). 2021. № 1. С. 188. DOI: 10.17213/2075-2067-20211-188-202.
  4. 4. Abhijeet R.K., Dhoble S.J. Thermoluminescence versatility in sulfate-based phosphors. Ch. 15. Series in Electronic and Optical Materials. Phosphor Handbook: Woodhead Publishing, 2023. Р. 331. DOI:10.1016/ B978-0-323-90539-8.00008-5.
  5. 5. Junne T., Wulff N., Breyer C., Naegler T. Critical materials in global low-carbon energy scenarios: The case for neodymium, dysprosium, lithium, and cobalt // Energy. 2020. V. 211, art. 118532. DOI: 10.1016/j.energy.2020.118532.
  6. 6. Thompson V. S., Gupta M., Jin H. et al. Techno-economic and life cycle analysis for bioleaching rare-earth elements from waste materials // ACS Sustainable Chemistry and Engineering. 2018. V. 6. №. 2. Р. 1602. DOI: 10.1021/acssuschemeng.7b02771
  7. 7. Кожевникова А.В., Уварова Е.С., Милевский Н.А., Заходяева Ю.А., Вошкин А.А. Выделение концентрата Ti(IV) из отработанных литий-ионных аккумуляторов // Теорет. основы хим. технологии. 2023. Т. 57. № 5. C. 553. DOI: 10.31857/S0040357123050111
  8. 8. Sethurajan M., van Hullebusch E. D., Fontana D. et al. Recent advances on hydrometallurgical recovery of critical and precious elements from end-of-life electronic wastes - A review // Crit. Rev. Environ. Sci. Technol. 2019. V. 49. №. 3. Р. 212. DOI: 10.1080/10643389.2018.1540760
  9. 9. Costis S., Mueller K.K., Coudert L. et al. Recovery potential of rare earth elements from mining and industrial residues: a review and cases studies // J. Geochem. Explor. 2021. V. 221. P. 106699. DOI: 10.1016/j.gexp-lo.2020.106699.
  10. 10. Rychkov V.N., Kirillov E.V., Kirillov S.V. Recovery of rare earth elements from phosphogypsum // J. Clean. Prod. 2018. V. 196. P. 674. DOI: 10.1016/j.jclepro.2018.06.114
  11. 11. Локшин Э.П., Тареева О.А. Разработка технологий извлечения редкоземельных элементов при сернокислотной переработке Хибинского апатитового концентрата на минеральные удобрения. Апатиты: КНЦ РАН, 2015.
  12. 12. Zhou B., Li Z., Chen C. Global potential of rare earth resources and rare earth demand from clean technologies // Minerals. 2017. V. 7. Iss. 11. № 203. DOI: 10.3390/min7110203
  13. 13. Liu F., Peng C., Porvali A. et al. Synergistic recovery of valuable metals from spent nickel-metal hydride batteries and lithium-ion batteries // ACS Sustain. Chem. Eng. 2019. V. 7. № 19. Р. 16103. https://doi.org/10.1021/acssuschemeng.9b02863
  14. 14. Cassayre L., Guzhov B., Zielinski M., Biscans B. Chemical processes for the recovery of valuable metals from spent nickel metal hydride batteries: A review // Renewable and Sustainable Energy Reviews. 2022. V. 170. Art. 112983. DOI: 10.1016/j.rser.2022.112983.
  15. 15. Abrahami S.T, Xiao Y, Yang Y. Rare-earth elements recovery from post-consumer hard-disc drives // Mineral Processing and Extractive Metallurgy. 2015. V. 124. Iss. 2. P. 106. DOI:10.1179/1743285514Y.0000000084
  16. 16. Sahoo P. K., Kim K., Powell M. A., Equeenuddin S. Recovery of metals and other beneficial products from coal fly ash: a sustainable approach for fly ash management // International Journal of Coal Science & Technology. 2016. V. 3. Iss. 3. P. 267. DOI: 10.1007/s40789-016-0141-2
  17. 17. Tan Q., Li J., Zeng X. Rare earth elements recovery from waste fluorescent lamps: a review // Critical Reviews in Environmental Science and Technology. 2015. Vol. 45. Iss. 7. P. 749. DOI: 10.1080/10643389.2014.900240
  18. 18. Chen L., Chen W., Chen P. Selective extraction of lithium and REEs from waste rare earth polishing powder: A two-stage leaching technique // Separation and Purification Technology. 2025. V. 353. Part C. art. 128524. DOI: 10.1016/j.seppur.2024.128524.
  19. 19. Masmoudi-Soussi A., Hammas-Nasri I., Horchani-Naifer K., Férid M. Rare earths recovery by fractional precipitation from a sulfuric leach liquor obtained after phosphogypsum processing // Hydrometallurgy. 2020. V. 191. art. 105253. DOI: 10.1016/j.hydrom-et.2020.105253.
  20. 20. Erust C., Karacahan M. K., Uysal P.T. Hydrometallurgical roadmaps and future strategies for recovery of rare earth elements // Miner. Process. Extr. Metall. Rev. 2023. V. 44. № 6. P. 436. DOI:10.1080/08827508.2022. 2073591.
  21. 21. Chen L., He X., Dang X. et al. Rare earth dissolution from polishing powder waste in H2O2-H2SO4 system: condition optimization and leaching mechanism // Hydrometallurgy. 2024. V. 224. art. 106248. DOI: 10.1016/j. hydromet.2023.106248.
  22. 22. Li W., Li Z., Wang N., Gu H. Selective extraction of rare earth elements from red mud using oxalic and sulfuric acids // Journal of Environmental Chemical Engineering. 2022. V. 10, art. 108650. DOI: 10.1016/j.jece.2022.108650.
  23. 23. Ding W., Bao S., Zhang Y., Xiao J. Efficient selective extraction of scandium from red mud // Miner. Process. Extr. Metall. Rev. 2022. V. 44. № 4. Р. 304. DOI:10.108 0/08827508.2022.2047044.
  24. 24. Das G., Lencka M.M., Eslamimanesh A. et al. Rare earth sulfates in aqueous systems: thermodynamic modeling of binary and multicomponent systems over wide concentration and temperature ranges // J. Chem. Thermodyn. 2019. V. 131. P. 49. DOI: 10.1016/j. jct.2018.10.020.
  25. 25. Judge W.D., Ng K.L., Moldoveanu G.A. et al. Solubilities of heavy rare earth sulfates in water (gadolinium to lutetium) and H2SO4 solutions dysprosium // Hydrometallurgy. 2023. V. 218. art. 106054. DOI: 10.1016/j. hydromet.2023.106054.
  26. 26. Kul M., Topkaya Y., Karakaya İ. Rare earth double sulfates from pre-concentrated bastnasite // Hydrometallurgy. 2008. V. 93. Iss. 3-4. P. 129 DOI: 10.1016/j.hy-dromet.2007.11.008.
  27. 27. Pietrelli L., Bellomo B., Fontana D., Montereali M.R. Rare earths recovery from NiMH spent batteries // Hydrometallurgy. 2002. V. 66. Iss. 1-3. P. 135. DOI: 10.1016/ S0304-386X(02)00107-X.
  28. 28. Said A., Lundström M., Louhi-Kultanen M. Recovery of lanthanum from aqueous solutions by crystallization as lanthanum sodium sulfate double salt // Miner. Met. Mater. Ser. 2022. V. 74. P. 3010. DOI:10.1007/s11837-022-05259-3.
  29. 29. Шеллер В.Р., Поуэлл А.Р. Анализ минералов и руд редких элементов; пер. с англ. М.: Госгеолтехиздат, 1962.
  30. 30. Гиллебранд В.Ф., Лэндель Г.Э., Брайт Г.А., Гофман Д.И. Практическое руководство по неорганическому анализу. М: Химия, 1966.
  31. 31. В.П. Волков, А.П. Гущин, Б.А. Соловьев и др. Способ разделения скандия и редкоземельных элементов. Патент № 2079431 РФ. 1997.
  32. 32. Pasechnik L.A., Skachkov V.M., Chufarov A.Yu. et al. High purity scandium extraction from red mud by novel simple technology // Hydrometallurgy. 2021. V. 202. art. 105597. DOI: 10.1016/j.hydromet.2021.105597.
  33. 33. Pasechnik L.A., O.A. Lipina, I.S. Medyankina et al. Crystal structure and optical properties of Eu3+-doped and undoped complex sulfate KSc(SO4)2 produced by facile and efficient crystallization process // J. Alloys Compd. 2024. V. 984, art. 173968. DOI: 10.1016/j. jallcom.2024.173968.
  34. 34. Pasechnik L.A., Medyankina I.S., Tyutyunnik A.P., Bamburov V.G. Solubility of scandium-cesium double sulfate CsSc(SO4)2 in sulfuric acid solutions // Russ. J. Inorg. Chem. 2023. V. 68. № 12. Р. 1799. DOI: 10.31857/S0044457X23601268.
  35. 35. Воскобойников Н.Б., Скиба С.Г. Новые методы исследования растворимости в водно-солевых системах. Л.: Наука, 1986.
  36. 36. Башков Б.И., Комиссарова Л.Н., Шацкий В.М. Изучение растворимости в системе K2SO4- Sc2(SO4)3-H2SO4 при 25°С // Журн. неорг. химии. 1970. Т. 15. № 5. С. 1362.
  37. 37. Коротаева Л.Г., Ремизов В.Г., Дударева А.Г., Арагон Х.А. Системы сульфат калия и рубидия - сульфат скандия // Журн. неорг. химии. 1975. Т. 20. № 8. С. 2197.
  38. 38. Korytnaya F.M., Pokrovsky A.N., P.A. Degtyarev Investigation of Phase Equilibriums in the systems K2SO4-Sc2(SO4)3, Rb2SO4-Sc2(SO4)3 and Cs2SO4- Sc2(SO4)3 // Thermochim Acta. 1980. V. 41. P. 141. DOI: 10.1016/0040-6031(80)80058-x.
  39. 39. Корытная Ф.М., Путилин С.Н., Покровский А.Н. Исследование двойных сульфатов щелочных металлов и скандия методом высокотемпературной рентгенографии // Журн. неорг. химии. 1983. Т. 28. С. 1716.
  40. 40. Han K.N., Kim R. Thermodynamic Analysis of Precipitation Characteristics of Rare Earth Elements with Sulfate in Comparison with Other Common Precipitants // Minerals. 2021. V. 11. № 7, art. 670. DOI: 10.3390/min11070670https://doi.org/10.1016/j.jct.2018.10.020.
  41. 41. Пягай И.Н., Кожевников В.Л., Пасечник Л.А., Скачков В.М. Переработка отвального шлама глиноземного производства с извлечением скандиевого концентрата // Записки Горного института. 2016. Т. 218. С. 225. ID: 26021511.
QR
Translate

Индексирование

Scopus

Scopus

Scopus

Crossref

Scopus

Higher Attestation Commission

At the Ministry of Education and Science of the Russian Federation

Scopus

Scientific Electronic Library