- PII
- 10.31857/S0040357123040139-1
- DOI
- 10.31857/S0040357123040139
- Publication type
- Status
- Published
- Authors
- Volume/ Edition
- Volume 57 / Issue number 4
- Pages
- 363-370
- Abstract
- A model was proposed for determining the efficiency of fractional separation in a uniflow cyclone. The model includes parameters that characterize the motion of a particle in the cyclone and, hence, the degree of separation, namely, the distance that the particle travels when moving in a helical path, and this path itself. The separation efficiency in a uniflow cyclone of a new design was experimentally studied. The experiments were carried out with quartz flour of four particle size fractions: 15, 20, 30, and 50 μm. The efficiency of the cyclone in the separation of small particles was high for apparatuses of this type. The separation efficiency curves were analyzed.
- Keywords
- прямоточный циклон пылеулавливание закрученный поток эффективность улавливания прямоточного циклона
- Date of publication
- 01.07.2023
- Year of publication
- 2023
- Number of purchasers
- 0
- Views
- 50
References
- 1. Мешалкин В.П. Введение в проектирование энергосберегающих химико-технологических систем. М.: РХТУ им. Д.И. Менделеева, 2020.
- 2. Long Huang, Songsheng Deng, Zhi Chen, Jinfa Guan, Ming Chen. Numerical analysis of a novel gas-liquid pre-separation cyclone // Separation and Purification Technology. 2018. V. 194. P. 470–479. https://doi.org/10.1016/j.seppur.2017.11.066
- 3. Zheng-Wei Zhang, Qing Li, Yan-Hong Zhang, Hua-Lin Wang. Simulation and experimental study of effect of vortex finder structural parameters on cyclone separator performance // Separation and Purification Technology. 2022. V. 286. 120394. https://doi.org/10.1016/j.seppur.2021.120394
- 4. Mohamadali Mirzaei et al. A hybrid multiphase model accounting for particle agglomeration for coarse-grid simulation of dense solid flow inside large-scale cyclones // Powder Technology. 2022. V. 399. 117186. https://doi.org/10.1016/j.powtec.2022.117186
- 5. Jianfei Song, Yaodong Wei, Guogang Sun, Jianyi Chen. Experimental and CFD study of particle deposition on the outer surface of vortex finder of a cyclone separator // Chemical Engineering J. 2017. V. 309. P. 249–262. https://doi.org/10.1016/j.cej.2016.10.019
- 6. Асламова В.С., Асламов А.А., Ляпустин П.К., Мусева Т.Н., Брагин Н.А. Прямоточный циклон для производства минеральной ваты // Экология и промышленность России. 2007. № 6. С. 26–27.
- 7. Lingzi Wang, Biyuan Liu, Jianmei Feng, Xueyuan Peng. Experimental study on the separation performance of a novel oil–gas cyclone separator // Powder Technology. 2023. V. 415. 118124. https://doi.org/10.1016/j.powtec.2022.118124
- 8. Ik-Hyun An, Chang-Hoon Lee, Jun-Hyung Lim, Hyo-Young Lee, Se-Jin Yook. Development of a miniature cyclone separator operating at low Reynolds numbers as a pre-separator for portable black carbon monitors // Advanced Powder Technology. 2021. V. 32. I. 12. P. 4779–4787. https://doi.org/10.1016/j.apt.2021.10.027
- 9. Guoyin Yu, Sijie Dong, Linna Yang, Di Yan, Kejun Dong, Yi Wei, Bo Wang. Experimental and numerical studies on a new double-stage tandem-nesting cyclone // Chem. Eng. Sci. 2021. V. 236. https://doi.org/10.1016/j.ces.2021.116537
- 10. Турубаев Р.Р., Шваб А.В. Численное исследование аэродинамики закрученного потока в вихревой камере комбинированного пневматического аппарата // Вестник Томского государственного университета. Математика и механика. 2017. № 47. С. 87–98. https://doi.org/10.17223/19988621/47/9
- 11. Николаев А.Н., Харьков В.В. Описание профилей окружной и осевой компонент скорости в полом вихревом аппарате // Вестник Казанского технологического университета. 2016. № 17. С. 71–74.
- 12. Chengming Song, Binbin Pei, Mengting Jiang, Bo Wang, Delong Xu, Yanxin Chen. Numerical analysis of forces exerted on particles in cyclone separators // Powder Technology. 2016. V. 294. P. 437–448. https://doi.org/10.1016/j.powtec.2016.02.052
- 13. Seiyed E., Ghasemi M., Vatani D.D., Ganji. Efficient approaches of determining the motion of a spherical particle in a swirling fluid flow using weighted residual methods // Particuology. 2015. V. 23. P. 68–74. https://doi.org/10.1016/j.partic.2014.12.008
- 14. Wenbin Li, Feng Wu, Liuyun Xu, Jipeng Sun, Xiaoxun Ma. CFD-DEM investigation of gas–solid swirling flow in an industrial-scale annular pipe // Chinese Journal of Chemical Engineering. V. 461. 141975. https://doi.org/10.1016/j.cjche.2023.03.011
- 15. Zhanghao Wan, Shiliang Yang, Duzuo Tang, Haibin Yuan, Jianhang Hu, Hua Wang. Particle-scale modeling study of coaxial jets of gas-solid swirling flow in an industrial-scale annular pipe via CFD-DEM // Powder Technology. V. 419. 118307. https://doi.org/10.1016/j.powtec.2023.118307
- 16. Wenbin Li, Feng Wu, Liuyun Xu, Jipeng Sun, Xiaoxun Ma. Numerical and experimental study on the particle erosion and gas–particle hydrodynamics in an integral multi-jet swirling spout-fluidized bed // Chinese J. Chemical Engineering. 2023. 159655. https://doi.org/10.1016/j.cjche.2023.03.011
- 17. Ma L., Ingham D.B., Wen X. Numerical modelling of the fluid and particle penetration through small sampling cyclones // J. Aerosol Sci. 2004. V. 31. P. 1097–1119.
- 18. Francisco José de Souza, Ricardo de Vasconcelos Salvo, Diego Alves de Moro Martins. Large eddy simulation of the gas–particle flow in cyclone separators // Sep. Purif. Technol. 2012. V. 94. P. 61–70. https://doi.org/10.1016/j.seppur.2012.04.006
- 19. Wang B., Xu D.L., Chu K.W., Yu. A.B. Numerical study of gas–solid flow in a cyclone separator // Appl. Math. Model. 2006. V. 30 P. 1326–1342. https://doi.org/10.1016/j.apm.2006.03.011
- 20. Wang B., Yu A.B. Numerical study of the gas–liquid–solid flow in hydrocyclones with different configuration of vortex finder // Chem. Eng. J. 2008. V. 135. P. 33–42. https://doi.org/10.1016/j.cej.2007.04.009
- 21. Xiaodong Li, Jianhua Yan, Yuchun Cao, Mingjiang Ni, Kefa Cen. Numerical simulation of the effects of turbulence intensity and boundary layer on separation efficiency in a cyclone separator // Chem. Eng. J. 2003. V. 95. P. 235–240. https://doi.org/10.1016/S1385-8947 (03)00109-8
- 22. Cui J., Chen X., Gong X., Yu. G. Numerical study of gas–solid flow in a radial-inlet structure cyclone separator // Ind. Eng. Chem. Res. 2010. V. 49. P. 5450–5460. https://doi.org/10.1016/j.apm.2006.03.011
- 23. Флисюк О.М., Топталов В.С., Марцулевич Н.А., Муратов О.В. Прямоточный циклон. Пат. 195672U1 РФ 2020.