RAS Chemistry & Material ScienceТеоретические основы химической технологии Theoretical Foundations of Chemical Engineering

  • ISSN (Print) 0040-3571
  • ISSN (Online) 3034-6053

Новые процессы сушки с использованием сверхкритических флюидов. Моделирование

PII
10.31857/S0040357124040037-1
DOI
10.31857/S0040357124040037
Publication type
Article
Status
Published
Authors
Volume/ Edition
Volume 58 / Issue number 4
Pages
420-434
Abstract
Теоретические основы химической технологии, Новые процессы сушки с использованием сверхкритических флюидов. Моделирование
Keywords
Date of publication
07.08.2024
Year of publication
2024
Number of purchasers
0
Views
33

References

  1. 1. Павлов К.Ф., Романков П.Г., Носков А.А. Примеры и задачи по курсу процессов и аппаратов химической технологии. М.: Химия, 1987.
  2. 2. Романко П.Г., Фролов В.Ф., Флисюк О.М. Методы расчета процессов и аппаратов химической технологии (примеры и задачи). М.: ХИМИЗДАТ, 2009.
  3. 3. Мусина Ф.А., Бронская В.В., Игнашина Т.В., Нургалиева А.А., Харитонова О.С. Экологически чистые химические технологии для устойчивого развития химической промышленности// Вестник технологического университета. 2019, Т. 22. № 8. C. 79.
  4. 4. Kiran E., Debenedetti P.G., Peters C.J. Supecritical fluids fundamentals and applications: Series E: Applied Sciences. V. 366. Springer-Science, 1998.
  5. 5. Heidaryan E., Hatami T., Rahimi M., Moghadasi J. Viscosity of pure carbon dioxide at supercritical region: Measurement and correlation approach // J. Supercritical Fluids. 2011. V. 56. № 2. P. 144.
  6. 6. Suárez J.J., Medina I., Bueno J.L. Diffusion coefficients in supercritical fluids: available data and graphical correlations // Fluid Phase Equilibria, 1998, V. 153, Diffusion coefficients in supercritical fluids, № 1. P. 167.
  7. 7. Гумеров Ф.М. Сверхкритические Флюидные Технологии. Экономическая Целесообразность. К.: ООО “Инновационно-издательский дом “Бутлеровское наследие”, 2019.
  8. 8. Vorobei A.M., Pokrovskiy O.I., Ustinovich K.B., Parenago O.O., Savilov S.V., Lunin V.V., Novotortsev V.M. Preparation of polymer – multi-walled carbon nanotube composites with enhanced mechanical properties using supercritical antisolvent precipitation // Polymer. 2016, V. 95. P. 77.
  9. 9. Gavrikov A.V., Loktev A.S., Ilyukhin A.B., Mukhin I.E., Bykov M.A., Vorobei A.M. et al. Partial oxidation of methane to syngas over SmCoO3-derived catalysts: the effect of the supercritical fluid assisted modification of the perovskite precursor // Int. J. Hydrogen Energy. 2023. V. 48. № 8. P. 2998.
  10. 10. Alekseev E.S., Alentiev A.Yu., Belova A.S., Bogdan V.I., Bogdan T.V., Bystrova A.V. et al. Supercritical fluids in chemistry // Russian Chemical Reviews. 2020. V. 89. № 12. P. 1337.
  11. 11. Pokrovskiy O., Vorobei A., Zuev Y., Kostenko M., Lunin V. Investigation of precipitation selectivity and particle size concentration dependences in supercritical antisolvent method via online supercritical fluid chromatography // Adv. Powder Technol. 2020. V. 31. № 6. P. 2257.
  12. 12. Vorobei A.M., Pokrovskiy O.I., Ustinovich K.B., Parenago O.O., Lunin V.V. A method for measuring solubility in multi-component sub- and supercritical fluids using an online hyphenation of supercritical antisolvent precipitation and supercritical fluid chromatography // J. Mol. Liquids. 2019. V. 280. P. 212.
  13. 13. McHugh M., Krukonis V. Supercritical fluid extraction: principles and practice. Supercritical Fluid Extraction. Elsevier, 2013.
  14. 14. Martín A., Cocero M.J. Micronization processes with supercritical fluids: fundamentals and mechanisms: drug delivery applications of supercritical fluid technology // Adv. Drug Delivery Rev. 2008. V. 60, Micronization processes with supercritical fluids, № 3. P. 339.
  15. 15. Menshutina N., Tsygankov P., Khudeev I., Lebedev A. Intensification methods of supercritical drying for aerogels production // Drying Technol. 2022. V. 40. № 7. P. 1278–1291.
  16. 16. Carvalho V.S., Dias A.L.B., Rodrigues K.P., Hatami T., Mei L.H.I., Martínez J., Viganó J. Supercritical fluid adsorption of natural extracts: Technical, practical, and theoretical aspects // J. CO2 Utilization. 2022. V. 56. P. 101865.
  17. 17. Perrut M. Sterilization and virus inactivation by supercritical fluids (a review): special edition on the occasion of Gerd Brunner’s 70th Birthday // J. Supercritical Fluids. 2012. V. 66. P. 359.
  18. 18. West C. Current trends in supercritical fluid chromatography // Analytical Bioanalytical Chem. 2018. V. 410. № 25. P. 6441.
  19. 19. Brunner G. Supercritical fluids as solvents and reaction media. 1st ed. Amsterdam Boston: Elsevier, 2004.
  20. 20. Di Maio E., Kiran E. Foaming of polymers with supercritical fluids and perspectives on the current knowledge gaps and challenges: 30th Year Anniversary Issue of the Journal of Supercritical Fluids // J. Supercritical Fluids. 2018. V. 134. P. 157.
  21. 21. Khudeev I., Lebedev A., Mochalova M., Menshutina N. Modeling and techno-economic optimization of the supercritical drying of silica aerogels // Dry. Technol. 2024. V. 42. P. 1–24.
  22. 22. Özbakır Y., Erkey C. Experimental and theoretical investigation of supercritical drying of silica alcogels // J. Supercritical Fluids. 2015. V. 98. P. 153–166.
  23. 23. Quiño J., Ruehl M., Klima T., Ruiz F., Will S., Braeuer A. Supercritical drying of aerogel: In situ analysis of concentration profiles inside the gel and derivation of the effective binary diffusion coefficient using Raman spectroscopy // J. Supercritical Fluids. 2016. V. 108. P. 1–12.
  24. 24. Griffin J.S., Mills D.H., Cleary M., Nelson R., Manno V.P., Hodes M. Continuous extraction rate measurements during supercritical CO2 drying of silica alcogel // J. Supercritical Fluids. 2014. V. 94. P. 38-47.
  25. 25. Bueno A., Selmer I., S.P R., Gurikov P., Lölsberg W., Weinrich D., Fricke M., Smirnova I. First evidence of solvent spillage under subcritical conditions in aerogel production // Indust. Eng. Chem. Res. 2018. V. 57. № 26. P. 8698–8707.
  26. 26. Nita L.E., Ghilan A., Rusu A.G., Neamtu I., Chiriac A.P. New trends in bio-based aerogels // Pharmaceutics. 2020. V. 12. № 5. P. 449.
  27. 27. Smirnova I., García-González C.A., Gurikov P. Pharmaceutical applications of aerogels // Springer Handbook of Aerogels: Springer Handbooks / eds. M.A. Aegerter, N. Leventis, M. Koebel, S.A. Steiner III. Cham: Springer International Publishing, 2023. P. 1489.
  28. 28. Vignes A. Diffusion in Binary Solutions. Variation of Diffusion Coefficient with Composition // Indust. Eng. Chem. Fundamentals. 1966. V. 5. № 2. P. 189–199.
  29. 29. Tyn M.T., Calus W.F. Diffusion coefficients in dilute binary liquid mixtures // J. Chem. Eng. Data. 1975. V. 20. № 1. P. 106–109.
  30. 30. He C.-H., Yu Y.-S. New equation for infinite-dilution diffusion coefficients in supercritical and high-temperature liquid solvents // Indust. Eng. Chem. Res. 1998. V 37. № 9. P. 3793–3798.
  31. 31. Кафаров В., Дорохов И., Жаворонков Н. Системный анализ процессов химической технологии: основы стратегии 2-е изд., пер. и доп. Монография. Системный анализ процессов химической технологии. М.: Litres, 2018.
QR
Translate

Индексирование

Scopus

Scopus

Scopus

Crossref

Scopus

Higher Attestation Commission

At the Ministry of Education and Science of the Russian Federation

Scopus

Scientific Electronic Library