RAS Chemistry & Material ScienceТеоретические основы химической технологии Theoretical Foundations of Chemical Engineering

  • ISSN (Print) 0040-3571
  • ISSN (Online) 3034-6053

Peculiarities of Formation of Internal Separatrix Manifolds in Systems of Different Physicochemical Nature

PII
S3034605325030037-1
DOI
10.7868/S3034605325030037
Publication type
Article
Status
Published
Authors
Volume/ Edition
Volume 59 / Issue number 3
Pages
23-33
Abstract
The ultimate possibilities of the process of rectification separation of multicomponent mixtures depend on the features of the structure of the liquid-vapor equilibrium diagram, in particular, on the presence of internal separating surfaces on the diagram. In the present work, the regularities of structure formation of separatrix surfaces of maximum dimensionality for systems of different chemical nature are investigated. For systems with homonymous deviations, when azeotropes relative to constituents of the same constituent are nodal points, we propose an approach to determine the number of saddle-shaped azeotropes of the first and (n-2) order and, respectively, the number of internal separatrix manifolds. The proposed approach is illustrated and confirmed on the example of model systems and industrial mixtures. The expediency of using one of the types of separation (first, second, intermediate) depending on the number and structure of internal separatrix surfaces is shown. The research presented in the article is directed to the development of the fundamental theory of thermodynamics of heterogeneous systems in the part of investigation of the structures of phase diagrams and mechanisms of their formation using thermodynamic and topological analysis within the framework of the general concept of the scientific school of Dr. Leonid Antonovich Serafimov, Professor.
Keywords
фазовая диаграмма равновесие жидкость-пар азеотроп сепаратриса ректификация правило азеотропии
Date of publication
10.06.2025
Year of publication
2025
Number of purchasers
0
Views
10

References

  1. 1. Жаров В.Т., Серафимов Л.А. Физико-химические основы дистилляции и ректификации. Л.: Химия, 1975.
  2. 2. Serafimov L.A. Thermodynamic and topological analysis of heterogeneous equilibrium diagrams of multicomponent mixtures // Russ. J. Phys. Chem. 2002. V. 76. № 8. С. 1211.
  3. 3. Serafimov L.A. State of the art in the thermodynamic and topological analysis of phase diagrams // Theor. Found. Chem. Eng. 2009. V. 43. № 3. С. 268. https://doi.org/10.1134/S0040579509030051.
  4. 4. Serafimov L.A., Frolkova A.V. Determination of vapor-liquid equilibrium diagrams of multicomponent systems // Chem. Pap. 2016. V. 70. № 12. Р. 1578. https://doi.org/10.1515/chempap-2016-0091
  5. 5. Серафимов Л.А., Фролкова А.В., Семин Г.А. Определение структуры диаграммы парожидкостного равновесия пятикомпонентной моноазеотропной системы // Вестник МИТХТ. 2014. Т. 9. № 3. С. 36.
  6. 6. Фролкова А.В. Структурный анализ фазовой диаграммы и оценка возможности ректификации многокомпонентных смесей // Теор. основы хим. технологии. 2024. Т. 58. № 1. С. 78. https://doi.org/10.31857/S0040357124010105
  7. 7. Frolkova A.V., Ososkova T.E., Frolkova A.K Thermodynamic and topological analysis of phase diagrams of quaternary systems with internal singular points // Theor. Found. Chem. Eng. 2020. V. 54. № 2. Р. 289. DOI: 10.31857/S0040357120020049
  8. 8. Safrit B.T., Westerberg A.W. Algorithm for generating the distillation regions for azeotropic multicomponent mixtures // Ind. Eng. Chem. Res. 1997. V. 36. Р. 1827. https://doi.org/10.1021/ie960344r.
  9. 9. Ahmad B.S., Zhang Y., Barton P.I. Product Sequences in Azeotropic Batch Distillation // AIChE J. 1998. V. 44. № 5. Р. 1051.
  10. 10. Rooks R.E., Doherty M.F., Malone M.F., Julka V. Structure of distillation regions for multicomponent azeotropic mixtures // AIChE J. 1998. V. 44. № 6. Р. 1382.
  11. 11. Popken T., Gmelding J. Simple Method for Determining the Location of Distillation Region Boundaries in Quaternary Systems // Ind. Eng. Chem. Res. 2004. V. 43. Р. 777. DOI: 10.1021/ie030303c.
  12. 12. Hegely L., Lang P. A new algorithm for the determination of product sequences in azeotropic batch distillation // Ind. Eng. Chem. Res. 2011. V. 50. № 22. Р. 12757. DOI: 10.1021/ie2016575
  13. 13. Blagov S., Hasse H. Topological analysis of vapor–liquid equilibrium diagrams for distillation process design // Phys. Chem. Chem. Phys. 2002. № 4. P. 896. DOI: 10.1039/b109541b.
  14. 14. Фролкова А.В., Охлопкова Е.А., Фролкова А.К. Термодинамико-топологический анализ структуры фазовой диаграммы пятикомпонентной системы и синтез схемы разделения смеси органических продуктов // Химия и технология органических веществ. 2020. Т. 16. № 4. С. 15. DOI: 10.54468/25876724_2020_4_15
  15. 15. Serafimov L.A., Frolkova A.V. The law of the algebraic sum of stationary points of vapor-liquid equilibrium diagrams of multicomponent mixtures // Theor. Found. Chem. Eng. 2013. V. 47. № 6. P. 680. DOI: 10.7868/S0040357113060092
  16. 16. Serafimov L.A., Frolokova A.K., Frolkova A.V. Poincaré integral invariants and separating manifolds of equilibrium open evaporation diagrams // Theor. Found. Chem. Eng. 2013. V. 47. № 2. P. 168. DOI: 10.7868/S004035711206022X
  17. 17. Frolkova A.V., Frolkova A.K., Zhuchkov V.I., Makhnariova Y.G. Homology and isomerism of the structures of phase diagrams and distillation flowsheets // Theor. Found. Chem. Eng. 2020. V. 54. № 5. P. 544. DOI: 10.31857/S0040357120050061
  18. 18. Yang A., Zou H., Chien I-L., Wang D. et al. Optimal Design and Effective Control of Triple–Column Extractive Distillation for Separating Ethyl Acetate/Ethanol/Water with Multi-Azeotrope // Ind. Eng. Chem. Res. 2019. V. 58. P. 7265. https://doi.org/10.1021/acs.iecr.9b00466
  19. 19. Jian X., Li J., Qing Ye, Liu X. Intensification and analysis of extractive distillation processes with preconcentration for separating ethyl acetate, isopropanol and water azeotropic mixtures // Sep. Purif. Technol. 2022. V. 287. P. 120499. https://doi.org/10.1016/j.seppur.2022.120499
  20. 20. Ma Z., Yao D., Zhao J., et al. Efficient recovery of benzene and n-propanol from wastewater via vapor recompression assisted extractive distillation based on techno-economic and environmental analysis // Process Safety and Environmental Protection. 2021. V. 148. P. 462. https://doi.org/10.1016/j.psep.2020.10.033
  21. 21. Shan B., Zheng Qi, Chen Z., Shen Y. et al. Dynamic control and performance comparison of conventional and dividing wall extractive distillation for benzene/isopropanol/water separation // J. Taiwan Institute of Chem. Engineers. 2021. V. 128. P. 1. https://doi.org/10.1016/j.jtice.2021.08.005
  22. 22. Жучков В.И., Рыжкин Д.А., Раева В.М. Экстрактивная ректификация смеси тетрагидрофуран–ацетонитрил–хлороформ // Теоретические основы химической технологии. 2023. Т. 57. № 1. С. 125. doi: 10.31857/S0040357123010153
  23. 23. Golikova A.D., Anufrikov Y.A., Shasherina A.Y., Misikov G.H., Toikka M.A., Samarov A.A., Toikka A.M. Excess enthalpies and heat of esterification reaction in acetic acid–n-butanol–n-butyl acetate–water system at 313.15 K // Russ. J. Gen. Chem. 2024. V. 94. № S1. P. S177. https://doi.org/10.1134/S1070363224140184
  24. 24. Misikov G., Zolotovsky K., Samarov A., Prikhodko I., Toikka M., Toikka A. Chemical equilibrium in the system acetic acid–n-amyl alcohol–n-amyl acetate–water at 323.15 K and atmospheric pressure: experimental data and equilibrium constant estimation // J. Chem. Eng. Data. 2024. V. 69. № 3. P. 1169. doi:10.1021/acs.jced.3c00744
  25. 25. Toikka M., Smirnov A., Trofimova M., Golikova A., Prikhodko I., Samarov A., Toikka A. Peculiarities of chemical equilibria in acetic acid–n-butyl alcohol–n-butyl acetate–water system at 318.15 K and 101.3 kPa // J. Chem. Eng.Data. 2023. V. 68. № 5. P. 1145. DOI: 10.1021/acs.jced.3c00009
  26. 26. Chicheva D.S., Krasnykh E.L., Shakun VA. Kinetic regularities of neopentyl glycol esterification with acetic and 2-ethylhexanoic acids // Fine Chem. Technol. 2024. V. 19. № 1. P. 28. https://doi.org/10.32362/2410-6593-2024-19-1-28-38
  27. 27. Serafimov L.A. The azeotropic rule and the classification of multicomponent mixtures. XI. Tangential azeotropy for three-component systems and chains of topological structures // Russ. J. Phys. Chem. 1971. T. 45. № 10. C. 1388.
  28. 28. Serafimov L.A., Chelyuskina T.V. Basic Properties of Tie-Line Vector Fields of Two-Phase Ternary Mixtures: Complex Singular Points. Theor. Found. Chem. Eng. 2003. V. 37, P. 482 https://doi.org/10.1023/A:1026094725970
QR
Translate

Indexing

Scopus

Scopus

Scopus

Crossref

Scopus

Higher Attestation Commission

At the Ministry of Education and Science of the Russian Federation

Scopus

Scientific Electronic Library