- Код статьи
- S30346053S0040357125010061-1
- DOI
- 10.7868/S3034605325010061
- Тип публикации
- Статья
- Статус публикации
- Опубликовано
- Авторы
- Том/ Выпуск
- Том 59 / Номер выпуска 1
- Страницы
- 47-56
- Аннотация
- Методами подвижных границ и оптического зондирования проведено сравнение закономерности распространения диффузионного фронта как в чистых агарозных гидрогелях, так и с добавлением оксида графена, и измерены массопроводные свойства гелевых систем. Установлено, что оксид графена обладает высокой поверхностной активностью, становится частью сетчатой структуры геля, влияя на скорость и эффективность диффузии. Кроме того, оксид графена способствует упорядочиванию гелевой структуры или же снижает рассеяние света внутри геля. Сочетание гидрогелей с оксидом графена позволяет создавать системы с управляемыми оптическими свойствами, что, в свою очередь, открывает новые возможности для совершенствования технологий 3D-биопечати. На основе метода случайного блуждания предложена численная модель, которая хорошо подходит для описания структур гидрогелей с оксидом графена. Данная модель позволит определять качество материалов в технологиях 3D-биопечати с точки зрения эффективности подачи питательных веществ для живых микроорганизмов, расположенных внутри геля. Сопоставление экспериментальных данных и численного моделирования продемонстрировало их значительное соответствие.
- Ключевые слова
- гидрогель оксид графена массоперенос метод подвижных границ 3D-биопечать спектрометрия численная модель
- Дата публикации
- 03.02.2025
- Год выхода
- 2025
- Всего подписок
- 0
- Всего просмотров
- 54
Библиография
- 1. Xu W., Jambhulkar S., Ravichandran D., Zhu Y., Kakarla M., Nian Q., Azeredo B., Chen X., Jin K., Vernon B. 3D printing- enabled nanoparticle alignment: A review of mechanisms and applications // Small. 2021. V. 17.
- 2. Kumar V., Kaur H., Kumari A., Hooda G., Garg V., Dureja H. Drug delivery and testing via 3D printing // Bioprinting. 2023. V. 36.
- 3. Banga H.K., Kalra P., Belokar R.M., Kumar R. Design and fabrication of prosthetic and orthotic product by 3D printing. In Prosthetics and Orthotics // IntechOpen. London, 2020.
- 4. Pokusaev B.G., Vyazmin A.V., Zakharov N.S., Khramtsov D.P., Nekrasov D.A. Unsteady mass transfer of nutrients in gels with channels of different spatial structures // Theoretical Foundations of Chemical Engineering. 2020. V. 54. P. 277.
- 5. Itapu B.M., Jayatissa A.H. A review in graphene/polymer composites // Chem. Sci.Int. J. 2018. № 23. Р. 1.
- 6. Palmieri, V., Spirito M.D., Papi M. Graphene-based scaffolds for tissue engineering and photothermal therapy // Nanomedicine. 2020. № 15. Р. 1411.
- 7. Mantecón-Oria M., Tapia O., Lafarga M., Berciano M.T., Munuera J.M., Villar-Rodil S., Paredes J.I., Rivero M.J., Diban N., Urtiaga A. Influence of the properties of different graphene-based nanomaterials dispersed in polycaprolactone membranes on astrocytic differentiation // Sci. Rep. 2022. № 12. Р. 13408.
- 8. Patil R., Alimperti S. Graphene in 3D Bioprinting // J. Funct. Biomater. 2024. № 15. Р. 82. https://doi.org/10.3390/jfb15040082.
- 9. Hong N., Yang G. H., Lee J., Kim G. 3D Bioprinting and Its in vivo Applications // J. Biomed. Mater. Res. Part B. 2018. V. 106. № 1. P. 444.
- 10. Holzl K., Lin S. M., Tytgat L., Van Vlierberghe S., Gu, L.X., Ovsianikov A. Bioink Properties Before, During and After 3D Bioprinting // Biofabrication. 2016. V. 8. № 3. P. 032002.
- 11. Gillies A.R., Lieber R.L. Structure and Function of the Skeletal Muscle Extracellular Matrix // Muscle Nerve. 2011. V. 44. № 3. Р. 318.
- 12. Derakhshanfar S., Mbeleck R., Xu K., Zhang X., Zhong W., Xing M. 3D Bioprinting for Biomedical Devices and Tissue Engineering: A Review of Recent Trends and Advances // Bioact. Mater. 2018. V. 3. № 2. Р. 144.
- 13. Shi Y., Xing T.L., Zhang H.B., Yin R.X., Yang S.M., Wei J., Zhang W.J. Tyrosinase-doped Bioink for 3D Bioprinting of Living Skin Constructs // Biomed. Mater. 2018. V. 13. № 3. Р. 035008.
- 14. Haring A.P., Thompson E.G., Tong Y., Laheri S., Cesewski E., Sontheimer H., Johnson B.N. Process- and Bio-inspired Hydrogels for 3D Bioprinting of Soft Free-standing Neural and Glial Tissues // Biofabrication. 2019. V. 11. № 2. Р. 025009.
- 15. Birenboim. M., Nadiv. R., Alatawna. A., Buzaglo. M., Schahar. G., Lee. J., Kim. G., Peled A., Regev O. Reinforcement and workability aspects of graphene-ox-ide-reinforced cement nanocomposites // Compos. Part. B Eng. 2019. № 161. Р. 68.
- 16. Yoo M.J., Park H.B. Effect of hydrogen peroxide on properties of graphene oxide in Hummers method // Carbon. 2019. № 141. Р. 515.
- 17. Dmitriev A.S., Klimenko A.V. Prospects for the Use of Two-Dimensional Nanomaterials in Energy Technologies (Review) // Thermal Engineering. 2023. V. 70. № 8. Р. 551.
- 18. Motiee E.S., Karbasi S., Bidram E., Sheikholeslam M. Investigation of physical, mechanical and biological properties of polyhydroxybutyrate-chitosan/graphene oxide nanocomposite scaffolds for bone tissue engineering applications // Int. J. Biol.Macromol. 2023. № 247. Р. 125593.
- 19. Challa A.A., Saha N., Szewczyk P.K., Karbowniczek J.E., Stachewicz U., Ngwabebhoh F.A., Saha P. Graphene oxide produced from spent coffee grounds in electrospun cellulose acetate scaffolds for tissue engineering applications // Mater. Today Commun. 2023. № 35. Р. 105974.
- 20. Wajahat M., Kim J.H., Ahn J., Lee S., Bae J., Pyo J., Seol S.K. 3D printing of Fe3O4 functionalized graphene-polymer (FGP) composite microarchitectures // Carbon. 2020. № 167. Р. 278.
- 21. Palaganas J.O., Palaganas N.B., Ramos L.J.I., David C.P.C. 3D printing of covalent functionalized graphene oxide nanocomposite via stereolithography // ACS Ap-pl. Mater.Interfaces. 2019. № 11. Р. 46034.
- 22. Ibrahim A., Klopocinska A., Horvat K., Abdel Hamid, Z. Graphene-based nanocomposites: Synthesis, mechanical properties, and characterizations // Polymers. 2021. № 13. Р. 2869.
- 23. Vatani M., Zare Y., Gharib N., Rhee K.Y., Park S.J. Simulating of effective conductivity for graphene-polymer nanocomposites // Sci. Rep. 2023. № 13. Р. 5907.
- 24. Haney R., Tran P., Trigg E.B., Koerner H., Dickens T., Ramakrishnan S. Printability and performance of 3D conductive graphite structures // Addit. Manuf. 2021. № 37. Р. 101618.
- 25. Borode A.O., Ahmed N.A., Olubambi P.A., Sharifpur M., Meyer J.P. Effect of various surfactants on the viscosity, thermal and electrical conductivity of graphene nanoplatelets Nanofluid // Int. J. Thermophys. 2021. № 42. Р. 158.
- 26. Solìs Moré Y., Panella G., Fioravanti G., Perrozzi F., Passacantando M., Giansanti F., Ardini M., Ottaviano L., Cimini A., Peniche C. Biocompatibility of composites based on chitosan, apatite, and graphene oxide for tissue applications // J. Biomed. Mater. Res. Part A. 2018. № 106. Р. 1585.
- 27. Patil R., Bahadur P., Tiwari S. Dispersed graphene materials of biomedical interest and their toxicological consequences. Adv. Colloid Interface Sci. 2020. № 275. Р. 102051.
- 28. Khramtsov D.P., Sulyagina O.A., Pokusaev B.G., Vyazmin A.V., Nekrasov D.A., Moshin A.A. Nonstationary mass transfer of nutrient medium for microorganisms in mixed gels // Theoretical Foundations of Chemical Engineering. 2022. V. 56. P. 669.
- 29. Lin C.C., Metters A.T. Hydrogels in controlled release formulations: Network design and mathematical modeling // Advanced Drug Delivery Reviews. 2006. V. 58. P. 1379.
- 30. Masuda N., Porter M.A., Lambiotte R. Random walks and diffusion on networks // Physics Reports. 2017. V. 716-717. P. 1.
- 31. Geim A.K. Random walk to graphene // International journal of Modern Physics B. 2011. V. 25. № 30. P. 4055.
- 32. Vamos, Calin, et al. Generalized Random Walk Algorithm for the Numerical Modeling of Complex Diffusion Processes // Journal of Computational Physics. 2023. V. 186. № 2. P. 527. doi:10.1016/S0021-9991(03)00073-1.
- 33. Ghoniem, Ahmed F., and Frederick S. Sherman. Grid-Free Simulation of Diffusion Using Random Walk Methods // Journal of Computational Physics. 1985. V. 61. № 1. 1985. P. 1. doi:10.1016/0021-9991(85)90058-0.
- 34. Zabet M., Mishra S., Kundu S. Effect of graphene on the self-assembly and rheological behavior of a triblock copolymer gel // RSC Advances. 2015. № 5. Р. 83936. doi: 10.1039/c5ra13672e.
- 35. Siripongpreda T., Jiraborvornpongsa N., Composto R.J., Rodthongkum N. Titanium dioxide/nitrogen-doped graphene-biopolymer based nanocomposite films for pollutant photodegradation and laser desorption ionization mass spectrometry of biomarkers // Nano-Structures & Nano-Objects. 2024. V. 38. Р. 101203.