RAS Chemistry & Material ScienceТеоретические основы химической технологии Theoretical Foundations of Chemical Engineering

  • ISSN (Print) 0040-3571
  • ISSN (Online) 3034-6053

CONCENTRATION DISTRIBUTION OF MOLECULES AND PARTICLES IN A CHROMIUM-CONTAINING MODEL SYSTEM: FE-KCRO-NACL-HSO-HO AT DIFFERENT TEMPERATURES OF ELECTROCOAGULATION PROCESS

PII
S30346053S0040357125020082-1
DOI
10.7868/S3034605325020082
Publication type
Article
Status
Published
Authors
Volume/ Edition
Volume 59 / Issue number 2
Pages
90-99
Abstract
Thermodynamic modeling of the electrocoagulation process in the system Fe-KCrO-Nacl-HSO-HO at wide limits of temperature change (278-300 K) has been carried out for the purpose of water purification from chromium (Cr). Physicochemical () and thermodynamic () parameters of the system at the established optimal ratios of the initial components have been calculated. Taking into account the calculated data the experimental research was carried out and the influence on the electro-coagulation processes was revealed: pH, current, type and concentration of electrolytes. The concentration distribution of individual molecules and particles (cations, anions) was established, including: Cr, Cr, CrO, CrOH, Fe, FeOH, FeOH in solution and thereby eliminating the use of ion chromatography for analytical purposes. An diagram showing the fields of presence of various forms of chromium has been drawn up, and a formula for calculating the value of the redox potential as a function of solution pH has been obtained. It is shown that Eh > 0, i.e., the medium is oxidizing, and the formation of Cr in concentrated solution (I > 0.8) was observed. The electrocoagulation process achieved the binding of sulfur and iron in the form of FeS and followed by the production of Fe(OH) and co-precipitation of Cr(OH). The degree of water purification from chromium was more than 97% (reduction of Cr in water from 100 mg/L to 2.29-2.30 mg/L).
Keywords
вода бихромат калия железо хлорид натрия электрокоагуляция концентрационное распределение
Date of publication
01.04.2025
Year of publication
2025
Number of purchasers
0
Views
56

References

  1. 1. Pan C., Troyer L.D., Catalano J.G., Giammar D.E. Dynamics of Chromium(VI) Removal from Drinking Water by Iron Electrocoagulation // Environmental science & technology. 2017. V. 50. № 24. P. 13502. DOI: 10.1021/acs.est.6b03637.
  2. 2. Hu S.Y., Li D., Huang C., Sun D.L., Yuan X.Z. A continuous electrocoagulation system with pH auto-adjusting by endogenous products to treat Cr(VI)-contaminated soil flushing solution // Separation and purification technology. 2017. V. 189. P. 213. DOI: 10.1016/j.seppur.2017.07.081.
  3. 3. Maitlo H.A., Kim K.H., Park J.Y., Kim J.H. Removal mechanism for chromium (VI) in groundwater with cost-effective iron-air fuel cell electrocoagulation // Separation and purification technology. 2019. V. 213. P. 378. DOI: 10.1016/j.seppur.2018.12.058.
  4. 4. Gaikwad M.S., Balomajumder C. Tea waste biomass activated carbon electrode for simultaneous removal of Cr(VI) and fluoride by capacitive deionization // Chemosphere. 2017. V. 184. P. 1141. DOI: 10.1016/j.chemosphere.2017.06.074.
  5. 5. Kaya A., Onac C., Alpoguz H.K.,Yilmaz A., Atar N. Removal of Cr(VI) through calixarene based polymer inclusion membrane from chrome plating bath water // Chemical engineering journal. 2016. V. 283. P. 141, DOI: 10.1016/j.cej.2015.07.052.
  6. 6. Demir A., Arisoy M. Biological and chemical removal of Cr(VI) from waste water: Cost and benefit analysis // Journal of hazardous materials. 2007. V. 147. № 1-2. P. 275. DOI: 10.1016/j.jhazmat.2006.12.076.
  7. 7. Ahluwalia S.S., Goyal D. Removal of Cr(VI) from aqueous solution by fungal biomass // Engineering in life sciences. 2010. V. 10. № 5. P. 480. DOI: 10.1002/else.200900111.
  8. 8. Meshalkin V.P. Current Theoretical and Applied Research on Energy—and Resource-Saving Highly Reliable Chemical Process Systems Engineering // Theor. Found. Chem. Eng. 2021. V. 55. № 4. P. 563.
  9. 9. Мешалкин В.П. Актуальные теоретические и прикладные исследования по инжинирингу энергоресурсосберегающих высоконадежных химико-технологических систем // Теор. осн. хим. технол. 2021. Т. 55. № 4. С. 399
  10. 10. Кичигин В.И., Цыпин А.В. К вопросу электрохимической очистки промышленных сточных вод // Материалы 70-й юбилейной Всероссийской научно-технической конференции по итогам НИР / СГАСУ. Самара. 2013. С. 217.
  11. 11. Aoudj S., Khelifa A., Drouiche N., Belkada R., Miroud D. Simultaneous removal of chromium(VI) and fluoride by electrocoagulation-electroflotation: Application of a hybrid Fe-Al anode // Chemical Engineering Journal. 2015. V. 267. P. 153.
  12. 12. Kabdaşlı I., Arslan-Alaton I., Olmez-Hancı T., Tunay O. Electrocoagulation applications for industrial wastewaters: a critical review // Environmental Technology Reviews. 2012. V. 1. № 1. P. 2. DOI: 10.1080/21622515.2012.715390.
  13. 13. Чернышев П.И., Визен Н.С., Кузин Е.Н., Кручинина Н.Е., Халиуллина Д.Р. Очистка сточных вод от ионов хрома (VI) // Успехи в химии и химической технологии. 2018. Т. XXXII. № 12. С. 79.
  14. 14. Hamdan S.S., El-Naas, M.H. Characterization of the removal of Chromium(VI) from groundwater by electrocoagulation // J. Ind. Eng. Chem. 2014. V. 20. № 5. P. 2775. DOI: 10.1016/j.jiec.2013.11.006.
  15. 15. Thirugnanasambandham K., Shine K. Investigation on the Removal of Chromium from Wastewater using Electrocoagulation // International Journal of Chemical Reactor Engineering. 2018. V. 16. № 5. P. 20170155. DOI: 10.1515/jicre-2017-0155.
  16. 16. Omwene P.I., Oncel M.S., Celen M., Kobya M. Heavy metal pollution and spatial distribution in surface sediments of Mustafakemalpasa stream located in the world’s largest borate basin (Turkey) // Chemosphere. 2018. V. 208. P. 782. DOI: 10.1016/j.chemosphere.2018.06.031.
  17. 17. Demirbas E., Kobya M., Senturk E., Ozkan T. Adsorption kinetics for the removal of chromium (VI) from aqueous solutions on the activated carbons prepared from agricultural wastes // Water SA. 2004. V. 30. № 4. P. 533. DOI: 10.4314/wsa.v304i.5106.
  18. 18. Kobya M., Demirbas E., Bayramoglu M. Modelling the effects of adsorbent dose and particle size on the adsorption of Cr(VI) ions from aqueous solutions // Adsorption Science and Technology. 2004. V. 22. № 7. P. 583. DOI: 10.1260/0263617042879465.
  19. 19. Kobya M., Erdem N., Demirbas E. Treatment of Cr, Ni and Zn from galvanic rinsing wastewater by electrocoagulation process using iron electrodes // Desalination and Water Treatment. 2014. V. 56. № 5. P. 1. DOI: 10.1080/19443994.2014.951692.
  20. 20. Takeno N. Atlas of Eh-pH diagrams. Intercomparison of thermodynamic databases // Geological Survey of Japan Open File Report No.419. 2005.
  21. 21. FACT (FACT database) bundled with commercially available software FACTSAGE (Fact Sage 5.2). 2002 released by GTT-Technologies.
  22. 22. Bale C.W., Chartrand P., Degtrev S.A. , Eriksson G., Hack K., Ben Mahfoud R., Melancon J., Pelton A.D., Petersen S. FactSage thermochemical software and databases // Calphad, 2002. V. 26. P. 189. DOI: 10.1016/S0364-5916(02)00035-4.
  23. 23. Maimekov Z., Sambaeva D., Izakov J., Shaykiyeva N., Dolaz M., Kobya M. Concentration Distribution of Molecules and Other Species in the Model System Fe–NaCl–NaS–HSO–HO at Various Temperatures of the Electrocoagulation Process // Theoretical Foundations of Chemical Engineering. 2023. V. 57. № 2. P. 205
  24. 24. Маймеков З.К., Самбаев Д.А., Изясов Ж.Б., Шайменев Н.Т., Далаз М., Кобья М. Концентрационное распределение молекул и частиц в модельной системе: Fe–NaCl–NaS–HSO–HO при различных температурах процесса электроқо-ағуляции // Теорет. основы хим. технологии. 2023. Т. 57. № 2. С. 205.
  25. 25. APHA (American Water Work Association), Standard methods for the examination of water and wastewater, Washington, DC, 1998, 19th ed.
  26. 26. Karpov I.K., Chudnenko K.V., Kulik D.A., Bychinskii V.A. The convex programming minimization of five thermodynamic potentials other than Gibbs energy in geochemical modeling // American Journal of Science. 2002. V. 302. № 4. P. 281.
  27. 27. Karpov I.K., Chudnenko K.V., Kulik D. A. Modeling chemical mass transfer in geochemical processes; thermodynamic relations, conditions of equilibria and numerical algorithms // American Journal of Science. 1997. V. 297. № 8. P. 767.
  28. 28. Yokokawa H. Tables of thermodynamic properties of inorganic compounds // Journal of the national chemical laboratory for industry. 1988. V. 83. P. 27.
QR
Translate

Индексирование

Scopus

Scopus

Scopus

Crossref

Scopus

Higher Attestation Commission

At the Ministry of Education and Science of the Russian Federation

Scopus

Scientific Electronic Library